On $P_5$-free locally split graphs
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 4, pp. 1063-1090
Voir la notice de l'article provenant de la source Library of Science
In this paper we study a graph which contains no induced path of five vertices which is known as the P_5-free graph. We prove that every prime P_5-free locally split graph has either a bounded number of vertices, or is a subclass of a (2, 1) split graph, or is a split graph. Then we show that the Minimum Coloring problem (MC) and the maximum independent set problem (MIS) for P_5-free locally split graphs can be both solved in polynomial time.
Keywords:
$SP_{5}$-free graphs, modular decomposition, recognition, maximum independent set, minimum coloring
@article{DMGT_2023_43_4_a10,
author = {Issaadi, Hayat and Ait Haddadene, Hacene and Kheddouci, Hamamache},
title = {On $P_5$-free locally split graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {1063--1090},
publisher = {mathdoc},
volume = {43},
number = {4},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a10/}
}
TY - JOUR AU - Issaadi, Hayat AU - Ait Haddadene, Hacene AU - Kheddouci, Hamamache TI - On $P_5$-free locally split graphs JO - Discussiones Mathematicae. Graph Theory PY - 2023 SP - 1063 EP - 1090 VL - 43 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a10/ LA - en ID - DMGT_2023_43_4_a10 ER -
Issaadi, Hayat; Ait Haddadene, Hacene; Kheddouci, Hamamache. On $P_5$-free locally split graphs. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 4, pp. 1063-1090. http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a10/