On $P_5$-free locally split graphs
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 4, pp. 1063-1090

Voir la notice de l'article provenant de la source Library of Science

In this paper we study a graph which contains no induced path of five vertices which is known as the P_5-free graph. We prove that every prime P_5-free locally split graph has either a bounded number of vertices, or is a subclass of a (2, 1) split graph, or is a split graph. Then we show that the Minimum Coloring problem (MC) and the maximum independent set problem (MIS) for P_5-free locally split graphs can be both solved in polynomial time.
Keywords: $SP_{5}$-free graphs, modular decomposition, recognition, maximum independent set, minimum coloring
@article{DMGT_2023_43_4_a10,
     author = {Issaadi, Hayat and Ait Haddadene, Hacene and Kheddouci, Hamamache},
     title = {On $P_5$-free locally split graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {1063--1090},
     publisher = {mathdoc},
     volume = {43},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a10/}
}
TY  - JOUR
AU  - Issaadi, Hayat
AU  - Ait Haddadene, Hacene
AU  - Kheddouci, Hamamache
TI  - On $P_5$-free locally split graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2023
SP  - 1063
EP  - 1090
VL  - 43
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a10/
LA  - en
ID  - DMGT_2023_43_4_a10
ER  - 
%0 Journal Article
%A Issaadi, Hayat
%A Ait Haddadene, Hacene
%A Kheddouci, Hamamache
%T On $P_5$-free locally split graphs
%J Discussiones Mathematicae. Graph Theory
%D 2023
%P 1063-1090
%V 43
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a10/
%G en
%F DMGT_2023_43_4_a10
Issaadi, Hayat; Ait Haddadene, Hacene; Kheddouci, Hamamache. On $P_5$-free locally split graphs. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 4, pp. 1063-1090. http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a10/