@article{DMGT_2023_43_4_a0,
author = {Dantas, Simone and Marinho, Rodrigo and Preissmann, Myriam and Sasaki, Diana},
title = {New results on {Type} 2 snarks},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {879--893},
year = {2023},
volume = {43},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a0/}
}
TY - JOUR AU - Dantas, Simone AU - Marinho, Rodrigo AU - Preissmann, Myriam AU - Sasaki, Diana TI - New results on Type 2 snarks JO - Discussiones Mathematicae. Graph Theory PY - 2023 SP - 879 EP - 893 VL - 43 IS - 4 UR - http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a0/ LA - en ID - DMGT_2023_43_4_a0 ER -
Dantas, Simone; Marinho, Rodrigo; Preissmann, Myriam; Sasaki, Diana. New results on Type 2 snarks. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 4, pp. 879-893. http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a0/
[1] K.I. Appel and W. Haken, Every planar map is four colorable, Amer. Math. Soc. 98 (1989). https://doi.org/10.1090/conm/098
[2] M. Behzad, Graphs and Their Chromatic Numbers, Ph.D. Thesis (Michigan State University, 1965).
[3] D. Blanuša, Problem cetiriju boja, Glasnik Mat. Fiz. Astr. Ser. II (1946) 31–42, in Croatian.
[4] G. Brinkmann, J. Goedgebeur, J. Hägglund and K. Markström, Generation and properties of snarks, J. Combin. Theory Ser. B 103 (2013) 468–488. https://doi.org/10.1016/j.jctb.2013.05.001
[5] G. Brinkmann, M. Preissmann and D. Sasaki, Snarks with total chromatic number 5, Discrete Math. Theor. Comput. Sci. 17 (2015) 369–382.
[6] C.N. Campos, S. Dantas and C.P. de Mello, The total-chromatic number of some families of snarks, Discrete Math. 311 (2011) 984–988. https://doi.org/10.1016/j.disc.2011.02.013
[7] A. Cavicchioli, T.E. Murgolo, B. Ruini and F. Spaggiari, Special classes of snarks, Acta Appl. Math. 76 (2003) 57–88. https://doi.org/10.1023/A:1022864000162
[8] S. Dantas, C.M.H. de Figueiredo, M. Preissmann and D. Sasaki, The hunting of a snark with total chromatic number 5, Discrete Appl. Math. 164 (2014) 470–481. https://doi.org/10.1016/j.dam.2013.04.006
[9] B. Descartes, Network-colourings, Math. Gaz. 32(299) (1948) 67–69. https://doi.org/10.2307/3610702
[10] D.R. Fulkerson, Blocking and anti-blocking pairs of polyhedra, Math. Program. 1 (1971) 168–194. https://doi.org/10.1007/BF01584085
[11] M. Gardner, Mathematical games: snarks, Boojums and other conjectures related to the four-color-map theorem, Scientific American 234 (1976) 126–130. https://doi.org/10.1038/scientificamerican0476-126
[12] M.K. Goldberg, Construction of class 2 graphs with maximum vertex degree 3, J. Combin. Theory Ser. B 31 (1981) 282–291. https://doi.org/10.1016/0095-8956(81)90030-7
[13] R. Isaacs, Infinite families of nontrivial trivalent graphs which are not Tait colorable, Amer. Math. Monthly 82 (1975) 221–239. https://doi.org/10.1080/00029890.1975.11993805
[14] R. Isaacs, Loupekhine's snarks: a bifamily of non-Tait-colorable graphs, Technical Report 263, Dept. of Math. Sci., The Johns Hopkins University, Maryland, U.S.A. (1976).
[15] T.R. Jensen and B. Toft, Graph Coloring Problems (John Wiley and Sons, 2011).
[16] M. Preissmann, C-minimal snarks, Annals Discrete Math. 17 (1983) 559–565. https://doi.org/10.1016/S0304-0208(08)73434-0
[17] N. Robertson, D.P. Sanders, P.D. Seymour and R. Thomas, The four-colour theorem, J. Combin. Theory Ser. B 70 (1997) 2–44. https://doi.org/10.1006/jctb.1997.1750
[18] M. Rosenfeld, On the total coloring of certain graphs, Israel J. Math. 9 (1971) 396–402. https://doi.org/10.1007/BF02771690
[19] P.D. Seymour, Disjoint paths in graphs, Discrete Math. 29 (1980) 293–309. https://doi.org/10.1016/0012-365X(80)90158-2
[20] G. Szekeres, Polyhedral decompositions of cubic graphs, Bull. Aust. Math. Soc. 8 (1973) 367–387. https://doi.org/10.1017/S0004972700042660
[21] P.G. Tait, Remarks on the colouring of maps, Proc. Roy. Soc. Edinburgh 10 (1880) 501–503. https://doi.org/10.1017/S0370164600044643
[22] W.T. Tutte, A contribution to the theory of chromatic polynomials, Canad. J. Math. 6 (1954) 80–91. https://doi.org/10.4153/CJM-1954-010-9
[23] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Analiz 3 (1964) 25–30.
[24] V.G. Vizing, Some unsolved problems in graph theory, Uspekhi Mat. Nauk 23 (1968) 117–134, in Russian. https://doi.org/10.1070/RM1968v023n06ABEH001252