New results on Type 2 snarks
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 4, pp. 879-893

Voir la notice de l'article provenant de la source Library of Science

Snarks are cyclically 4-edge-connected cubic graphs that admit no proper 3-edge-coloring. A snark is of Type 1 if it has a proper total coloring of its vertices and edges with four colors; it is of Type 2 if any total coloring requires at least five colors. Following an extensive computer search, in 2003, Cavicchioli et al. asked whether there exist Type 2 snarks of girth at least 5. This question is still open, however, in 2015, Brinkmann et al. described the first known family of Type 2 snarks of girth 4. In this work we provide new families of Type 2 snarks of girth 4, all of which can be constructed by a dot product of two Type 1 snarks. We also show that the previously constructed Type 2 snarks of Brinkmann et al. do not have this property.
Keywords: dot product, total coloring, snark
@article{DMGT_2023_43_4_a0,
     author = {Dantas, Simone and Marinho, Rodrigo and Preissmann, Myriam and Sasaki, Diana},
     title = {New results on {Type} 2 snarks},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {879--893},
     publisher = {mathdoc},
     volume = {43},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a0/}
}
TY  - JOUR
AU  - Dantas, Simone
AU  - Marinho, Rodrigo
AU  - Preissmann, Myriam
AU  - Sasaki, Diana
TI  - New results on Type 2 snarks
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2023
SP  - 879
EP  - 893
VL  - 43
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a0/
LA  - en
ID  - DMGT_2023_43_4_a0
ER  - 
%0 Journal Article
%A Dantas, Simone
%A Marinho, Rodrigo
%A Preissmann, Myriam
%A Sasaki, Diana
%T New results on Type 2 snarks
%J Discussiones Mathematicae. Graph Theory
%D 2023
%P 879-893
%V 43
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a0/
%G en
%F DMGT_2023_43_4_a0
Dantas, Simone; Marinho, Rodrigo; Preissmann, Myriam; Sasaki, Diana. New results on Type 2 snarks. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 4, pp. 879-893. http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a0/