A characterization of internally 4-connected $\{P_{10}− \{v_1,v_2\}\}$-minor-free graphs
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 3, pp. 731-742

Voir la notice de l'article provenant de la source Library of Science

Let P_10 be the Petersen graph. Let V_8^– =P_10-{v_1, v_2}, where v_1 and v_2 are the adjacent vertices of P_10. In this paper, all internally 4-connected graphs that do not contain V_8^– as a minor are charaterized.
Keywords: internally $4$-connected, $V_{8}^{--}$-minor-free, Petersen graph, $2$-con\-nected minor
@article{DMGT_2023_43_3_a9,
     author = {Zhou, Xiaomin and Yang, Weihua and Guan, Xiaxia and Qin, Chengfu},
     title = {A characterization of internally 4-connected $\{P_{10}\ensuremath{-} \{v_1,v_2\}\}$-minor-free graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {731--742},
     publisher = {mathdoc},
     volume = {43},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a9/}
}
TY  - JOUR
AU  - Zhou, Xiaomin
AU  - Yang, Weihua
AU  - Guan, Xiaxia
AU  - Qin, Chengfu
TI  - A characterization of internally 4-connected $\{P_{10}− \{v_1,v_2\}\}$-minor-free graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2023
SP  - 731
EP  - 742
VL  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a9/
LA  - en
ID  - DMGT_2023_43_3_a9
ER  - 
%0 Journal Article
%A Zhou, Xiaomin
%A Yang, Weihua
%A Guan, Xiaxia
%A Qin, Chengfu
%T A characterization of internally 4-connected $\{P_{10}− \{v_1,v_2\}\}$-minor-free graphs
%J Discussiones Mathematicae. Graph Theory
%D 2023
%P 731-742
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a9/
%G en
%F DMGT_2023_43_3_a9
Zhou, Xiaomin; Yang, Weihua; Guan, Xiaxia; Qin, Chengfu. A characterization of internally 4-connected $\{P_{10}− \{v_1,v_2\}\}$-minor-free graphs. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 3, pp. 731-742. http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a9/