A characterization of internally 4-connected $\{P_{10}− \{v_1,v_2\}\}$-minor-free graphs
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 3, pp. 731-742
Voir la notice de l'article provenant de la source Library of Science
Let P_10 be the Petersen graph. Let V_8^– =P_10-{v_1, v_2}, where v_1 and v_2 are the adjacent vertices of P_10. In this paper, all internally 4-connected graphs that do not contain V_8^– as a minor are charaterized.
Keywords:
internally $4$-connected, $V_{8}^{--}$-minor-free, Petersen graph, $2$-con\-nected minor
@article{DMGT_2023_43_3_a9,
author = {Zhou, Xiaomin and Yang, Weihua and Guan, Xiaxia and Qin, Chengfu},
title = {A characterization of internally 4-connected $\{P_{10}\ensuremath{-} \{v_1,v_2\}\}$-minor-free graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {731--742},
publisher = {mathdoc},
volume = {43},
number = {3},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a9/}
}
TY - JOUR
AU - Zhou, Xiaomin
AU - Yang, Weihua
AU - Guan, Xiaxia
AU - Qin, Chengfu
TI - A characterization of internally 4-connected $\{P_{10}− \{v_1,v_2\}\}$-minor-free graphs
JO - Discussiones Mathematicae. Graph Theory
PY - 2023
SP - 731
EP - 742
VL - 43
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a9/
LA - en
ID - DMGT_2023_43_3_a9
ER -
%0 Journal Article
%A Zhou, Xiaomin
%A Yang, Weihua
%A Guan, Xiaxia
%A Qin, Chengfu
%T A characterization of internally 4-connected $\{P_{10}− \{v_1,v_2\}\}$-minor-free graphs
%J Discussiones Mathematicae. Graph Theory
%D 2023
%P 731-742
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a9/
%G en
%F DMGT_2023_43_3_a9
Zhou, Xiaomin; Yang, Weihua; Guan, Xiaxia; Qin, Chengfu. A characterization of internally 4-connected $\{P_{10}− \{v_1,v_2\}\}$-minor-free graphs. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 3, pp. 731-742. http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a9/