@article{DMGT_2023_43_3_a8,
author = {Volkmann, Lutz},
title = {Double {Roman} and double {Italian} domination},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {721--730},
year = {2023},
volume = {43},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a8/}
}
Volkmann, Lutz. Double Roman and double Italian domination. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 3, pp. 721-730. http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a8/
[1] H.A. Ahangar, M. Chellali and S.M. Sheikholeslami, On the double Roman domination in graphs, Discrete Appl. Math. 232 (2017) 1–7. https://doi.org/10.1016/j.dam.2017.06.014
[2] J. Amjadi, S. Nazari-Moghaddam, S.M. Sheikholeslami and L. Volkmann, An upper bound on the double Roman domination number, J. Comb. Optim. 36 (2018) 81–89. https://doi.org/10.1007/s10878-018-0286-6
[3] F. Azvin and N. Jafari Rad, Bounds on the double Italian domination number of a graph, Discuss. Math. Graph Theory, in press. https://doi.org/10.7151/dmgt.2330
[4] F. Azvin, N. Jafari Rad and L. Volkmann, Bounds on the outer-independent double Italian domination number, Commun. Comb. Optim. 6 (2021) 123–136.
[5] R.A. Beeler, T.W. Haynes and S.T. Hedetniemi, Double Roman domination, Discrete Appl. Math. 211 (2016) 23–29. https://doi.org/10.1016/j.dam.2016.03.017
[6] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann, Roman domination in graphs, in: Topics in Domination in Graphs, T.W. Haynes, S.T. Hedetniemi and M.A. Henning (Ed(s)), (Springer 2020) 365–409. https://doi.org/10.1007/978-3-030-51117-3_11
[7] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann, Varieties of Roman domination, in: Structures of Domination in Graphs, T.W. Haynes, S.T. Hedetniemi and M.A. Henning (Ed(s)), (Springer 2021).
[8] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann, Varieties of Roman domination II}, AKCE Int. J. Graphs Comb. 17 (2020) 966–984. https://doi.org/10.1016/j.akcej.2019.12.001
[9] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann, A survey on Roman domination parameters in directed graphs (J. Combin. Math. Combin. Comput.), to appear.
[10] E.J. Cockayne, P.A. Dreyer, S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004) 11–22. https://doi.org/10.1016/j.disc.2003.06.004
[11] M. Hajibaba and N. Jafari Rad, A note on the Italian domination number and double Roman domination number in graphs, J. Combin. Math. Combin. Comput. 109 (2019) 169–183.
[12] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998).
[13] N. Jafari Rad and H. Rahbani, Some progress on the double Roman domination in graphs, Discuss. Math. Graph Theory 39 (2019) 41–53. https://doi.org/10.7151/dmgt.2069
[14] R. Khoeilar, H. Karami, M. Chellali and S.M. Sheikholeslami, An improved upper bound on the double Roman domination number of graphs with minimum degree at least two, Discrete Appl. Math. 270 (2019) 159–167. https://doi.org/10.1016/j.dam.2019.06.018
[15] D.A. Mojdeh and L. Volkmann, Roman {3}–domination (double Italian domination), Discrete Appl. Math. 283 (2020) 555–564. https://doi.org/10.1016/j.dam.2020.02.001
[16] E.A. Nordhaus and J.W. Gaddum, On complementary graphs, Amer. Math. Monthly 63 (1956) 175–177. https://doi.org/10.2307/2306658
[17] Z. Shao, D.A. Mojdeh and L. Volkmann, Total Roman {3}-domination, Symmetry 12 (2020) 268. https://doi.org/10.3390/sym12020268