An upper bound on the chromatic number of 2-planar graphs
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 3, pp. 703-720
Cet article a éte moissonné depuis la source Library of Science
It is proved that any 2-planar graph (i.e., a graph which can be drawn on a plane such that any edge intersects at most two others) has a proper vertex coloring with 9 colors.
Keywords:
2-planar graphs, chromatic number
@article{DMGT_2023_43_3_a7,
author = {Karpov, Dmitri V.},
title = {An upper bound on the chromatic number of 2-planar graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {703--720},
year = {2023},
volume = {43},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a7/}
}
Karpov, Dmitri V. An upper bound on the chromatic number of 2-planar graphs. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 3, pp. 703-720. http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a7/
[1] G. Ringel, Ein Sechsfarbenproblem auf der Kugel, Abh. Math. Semin. Univ. Hambg. 29 (1965) 107–117. https://doi.org/10.1007/BF02996313
[2] J. Pach and G. Tóth, Graphs drawn with few crossing per edge, Combinatorica 17 (1997) 427–439. https://doi.org/10.1007/BF01215922
[3] O.V. Borodin, A solution of Ringel's problem on vertex-face coloring of plane graphs and on coloring of 1-planar graphs, Metody Diskret. Analiz. 41 (1984) 12–26, (in Russian).
[4] D.V. Karpov, On plane drawings of 2-planar graphs, Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov 488 (2019) 49–65.