An upper bound on the chromatic number of 2-planar graphs
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 3, pp. 703-720 Cet article a éte moissonné depuis la source Library of Science

Voir la notice de l'article

It is proved that any 2-planar graph (i.e., a graph which can be drawn on a plane such that any edge intersects at most two others) has a proper vertex coloring with 9 colors.
Keywords: 2-planar graphs, chromatic number
@article{DMGT_2023_43_3_a7,
     author = {Karpov, Dmitri V.},
     title = {An upper bound on the chromatic number of 2-planar graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {703--720},
     year = {2023},
     volume = {43},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a7/}
}
TY  - JOUR
AU  - Karpov, Dmitri V.
TI  - An upper bound on the chromatic number of 2-planar graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2023
SP  - 703
EP  - 720
VL  - 43
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a7/
LA  - en
ID  - DMGT_2023_43_3_a7
ER  - 
%0 Journal Article
%A Karpov, Dmitri V.
%T An upper bound on the chromatic number of 2-planar graphs
%J Discussiones Mathematicae. Graph Theory
%D 2023
%P 703-720
%V 43
%N 3
%U http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a7/
%G en
%F DMGT_2023_43_3_a7
Karpov, Dmitri V. An upper bound on the chromatic number of 2-planar graphs. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 3, pp. 703-720. http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a7/

[1] G. Ringel, Ein Sechsfarbenproblem auf der Kugel, Abh. Math. Semin. Univ. Hambg. 29 (1965) 107–117. https://doi.org/10.1007/BF02996313

[2] J. Pach and G. Tóth, Graphs drawn with few crossing per edge, Combinatorica 17 (1997) 427–439. https://doi.org/10.1007/BF01215922

[3] O.V. Borodin, A solution of Ringel's problem on vertex-face coloring of plane graphs and on coloring of 1-planar graphs, Metody Diskret. Analiz. 41 (1984) 12–26, (in Russian).

[4] D.V. Karpov, On plane drawings of 2-planar graphs, Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov 488 (2019) 49–65.