@article{DMGT_2023_43_3_a6,
author = {Dankelmann, Peter and DeVilbiss, Matthew and Erwin, David J. and Guest, Kelly and Matzke, Ryan},
title = {On subgraphs with prescribed eccentricities},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {685--702},
year = {2023},
volume = {43},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a6/}
}
TY - JOUR AU - Dankelmann, Peter AU - DeVilbiss, Matthew AU - Erwin, David J. AU - Guest, Kelly AU - Matzke, Ryan TI - On subgraphs with prescribed eccentricities JO - Discussiones Mathematicae. Graph Theory PY - 2023 SP - 685 EP - 702 VL - 43 IS - 3 UR - http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a6/ LA - en ID - DMGT_2023_43_3_a6 ER -
%0 Journal Article %A Dankelmann, Peter %A DeVilbiss, Matthew %A Erwin, David J. %A Guest, Kelly %A Matzke, Ryan %T On subgraphs with prescribed eccentricities %J Discussiones Mathematicae. Graph Theory %D 2023 %P 685-702 %V 43 %N 3 %U http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a6/ %G en %F DMGT_2023_43_3_a6
Dankelmann, Peter; DeVilbiss, Matthew; Erwin, David J.; Guest, Kelly; Matzke, Ryan. On subgraphs with prescribed eccentricities. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 3, pp. 685-702. http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a6/
[1] F. Buckley, Z. Miller and P.J. Slater, On graphs containing a given graph as center, J. Graph Theory 5 (1981) 427–434. https://doi.org/10.1002/jgt.3190050413
[2] G. Chartrand and L. Lesniak, Graphs and Digraphs (Chapman and Hall, New York, 1996).
[3] G. Chartrand, M. Schultz and S.J. Winters, On eccentric vertices in graphs, Networks 28 (1996) 181–186. https://doi.org/10.1002/(SICI)1097-0037(199612)28:43.0.CO;2-H
[4] P. Dankelmann, D.J. Erwin, W. Goddard, S. Mukwembi and H.C. Swart, Eccentric counts, connectivity and chordality, Inform. Process. Lett. 112 (2012) 944–947. https://doi.org/10.1016/j.ipl.2012.08.022
[5] P. Dankelmann, D.J. Erwin, W. Goddard, S. Mukwembi and H.C. Swart, A characterisation of eccentric sequences of maximal outerplanar graphs, Australas. J. Combin. 58 (2014) 376–391.
[6] P. Dankelmann, D. Erwin, and H. Swart, On digraphs with prescribed eccentricities, J. Combin. Math. Combin. Comput. 104 (2018) 143–160.
[7] D.J. Erwin and F. Harary, Destroying automorphisms by fixing nodes, Discrete Math. 306 (2006) 3244–3252. https://doi.org/10.1016/j.disc.2006.06.004
[8] D. Ferrero and F. Harary, On eccentricity sequences of connected graphs, AKCE Int. J. Graphs Comb. 6 (2009) 401–408.
[9] J. Gimbert and N. López, Eccentricity sequences and eccentricity sets in digraphs, Ars Combin. 86 (2008) 225–238.
[10] S. Gupta, M. Singh and A.K. Madan, Eccentric distance sum: A novel graph invariant for predicting biological and physical properties, J. Math. Anal. Appl. 275 (2002) 386–401. https://doi.org/10.1016/S0022-247X(02)00373-6
[11] A. Haviar, P. Hrnčiar and G. Monoszová, Minimal eccentric sequences with least eccentricity three, Acta Univ. M. Belii Ser. Math. 5 (1997) 27–50.
[12] M. Harminc and J. Ivančo, Note on eccentricities in tournaments, Graphs Combin. 10 (1994) 231–234. https://doi.org/10.1007/BF02986670
[13] L. Lesniak, Eccentric sequences in graphs, Period. Math. Hungar. 6 (1975) 287–293. https://doi.org/10.1007/BF02017925
[14] V. Mukungunugwa and S. Mukwembi, On eccentric distance sum and minimum degree, Discrete Appl. Math. 175 (2014) 55–61. https://doi.org/10.1016/j.dam.2014.05.019
[15] D. Mubayi and D.B. West, On the number of vertices with specified eccentricity, Graphs Combin. 16 (2000) 441–452. https://doi.org/10.1007/PL00007229
[16] R. Nandakumar, On Some Eccentric Properties of Graphs, Ph.D. Thesis (Indian Institute of Technology, New Delhi, 1986).
[17] O.R. Oellermann and S. Tian, Steiner n-eccentricity sequences of graphs, Recent Studies in Graph Theory (1989) 206–211.
[18] A. Tamir, The k-centrum multi-facility location problem, Discrete Appl. Math. 109 (2001) 293–307. https://doi.org/10.1016/S0166-218X(00)00253-5