@article{DMGT_2023_43_3_a5,
author = {Skupie\'n, Zdzis{\l}aw},
title = {The {Petersen} and {Heawood} graphs make up graphical twins via induced matchings},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {677--683},
year = {2023},
volume = {43},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a5/}
}
Skupień, Zdzisław. The Petersen and Heawood graphs make up graphical twins via induced matchings. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 3, pp. 677-683. http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a5/
[1] G.M. Adel'son-Vel'skiǐ and V.K. Titov, On edge 4-chromatic cubic graphs, in: Proc. Conf. held at Moscow Univ. in Jan. 27–29, 1971, Voprosy Kibernetiki (1973) 5–14, in Russian.
[2] J.-C. Bermond, J.M.S. Simões-Pereira and C.M. Zamfirescu, On non-Hamiltonian homogeneously traceable digraphs, Math. Japon. 24 (1979/80) 423–426.
[3] G. Chartrand, R.J. Gould and S.P. Kapoor, On homogeneously traceable nonhamiltonian graphs, in: Proc. 2nd Internat. Conf. on Combinat. Math., Ann. New York Acad. Sci. 319 (1979) 130–135. https://doi.org/10.1111/j.1749-6632.1979.tb32783.x
[4] R.J. Faudree, R.H. Schelp, A. Gyárfás and Zs. Tuza, The strong chromatic index of graphs, Ars Combin. 29B (1990) 205–211.
[5] R.J. Gould, Degree sets for homogeneously traceably non-Hamiltonian graphs, Colloq. Math. 45 (1981) 155–158. https://doi.org/10.4064/cm-45-1-155-158
[6] P.J. Heawood, Map-colour theorem, Quart. J. Math. Oxford Ser. 24 (1890) 332–338.
[7] D.A. Holton and J. Sheehan, The Petersen Graph (Cambridge Univ. Press, Cambridge, 1993). https://doi.org/10.1017/CBO9780511662058
[8] R. Isaacs, Infinite families of non-trivial trivalent graphs which are not Tait colorable, Amer. Math. Monthly 82 (1975) 221–239. https://doi.org/10.1080/00029890.1975.11993805
[9] J. Petersen, Sur le théorème de Tait, L'intermédiaire des Mathématiciens 5 (1898) 225–227.
[10] Z. Skupień, Homogeneously traceable and Hamiltonian connected graphs (1976), preprint.
[11] Z. Skupień, Degrees in homogeneously traceable graphs, Ann. Discrete Math. 8 (1980) 185–188. https://doi.org/10.1016/S0167-5060(08)70871-9
[12] Z. Skupień, Maximum degree among vertices of a non-Hamiltonian homogeneously traceable graph, in: Combinatorics and Graph Theory, S.B. Rao (Ed(s)), Lecture Notes in Math. 885 (1981) 496–500.
[13] Z. Skupień, On homogeneously traceable nonhamiltonian digraphs and oriented graphs, in: The Theory and Applications of Graphs, G. Chartrand, Y. Alavi, D.L. Goldsmith, L. Lesniak-Foster and D.R. Lick (Ed(s)), (Wiley, New York 1981) 517–527.
[14] Z. Skupień, Homogeneously traceable and Hamiltonian connected graphs, Demonstr. Math. 17 (1984) 1051–1067. https://doi.org/10.1515/dema-1984-0424
[15] M.M. Sysło and Z. Skupień, Applied Graph Theory III} Euler and Hamilton graphs. Saleman problem, Math. Appl. (Warsaw) X (1977) 5–54, in Polish.
[16] T. Zamfirescu, Three small cubic graphs with interesting Hamiltonian properties, J. Graph Theory 4 (1980) 287–292. https://doi.org/10.1002/jgt.3190040306