@article{DMGT_2023_43_3_a4,
author = {Alcon, Liliana and Gutierrez, Marisa and Hernando, Carmen and Mora, Merc\'e and Pelayo, Ignacio},
title = {The neighbor-locating-chromatic number of trees and unicyclic graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {659--675},
year = {2023},
volume = {43},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a4/}
}
TY - JOUR AU - Alcon, Liliana AU - Gutierrez, Marisa AU - Hernando, Carmen AU - Mora, Mercé AU - Pelayo, Ignacio TI - The neighbor-locating-chromatic number of trees and unicyclic graphs JO - Discussiones Mathematicae. Graph Theory PY - 2023 SP - 659 EP - 675 VL - 43 IS - 3 UR - http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a4/ LA - en ID - DMGT_2023_43_3_a4 ER -
%0 Journal Article %A Alcon, Liliana %A Gutierrez, Marisa %A Hernando, Carmen %A Mora, Mercé %A Pelayo, Ignacio %T The neighbor-locating-chromatic number of trees and unicyclic graphs %J Discussiones Mathematicae. Graph Theory %D 2023 %P 659-675 %V 43 %N 3 %U http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a4/ %G en %F DMGT_2023_43_3_a4
Alcon, Liliana; Gutierrez, Marisa; Hernando, Carmen; Mora, Mercé; Pelayo, Ignacio. The neighbor-locating-chromatic number of trees and unicyclic graphs. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 3, pp. 659-675. http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a4/
[1] L. Alcon, M. Gutierrez, C. Hernando, M. Mora and I.M. Pelayo, Neighbor-locating colorings in graphs, Theoret. Comput. Sci. 806 (2020) 144–155. https://doi.org/10.1016/j.tcs.2019.01.039
[2] L. Alcon, M. Gutierrez, C. Hernando, M. Mora and I.M. Pelayo, The neighbor-locating-chromatic number of pseudotrees (2019). arXiv: 1903.11937v2
[3] E.T. Baskoro and A. Asmiati, Characterizing all trees with locating-chromatic number 3, Electron. J. Graph Theory Appl. 1 (2013) 109–117. https://doi.org/10.5614/ejgta.2013.1.2.4
[4] A. Behtoei and M. Anbarloei, The locating chromatic number of the join of graphs, Bull. Iranian Math. Soc. 40 (2014) 1491–1504.
[5] A. Behtoei and M. Anbarloei, A bound for the locating chromatic numbers of trees, Trans. Comb. 4 (2015) 31–41.
[6] A. Behtoei and B. Omoomi, On the locating chromatic number of Kneser graphs, Discrete Appl. Math. 159 (2011) 2214–2221. https://doi.org/10.1016/j.dam.2011.07.015
[7] G.G. Chappell, J. Gimbel and C. Hartman, Bounds on the metric and partition dimensions of a graph, Ars Combin. 88 (2008) 349–366.
[8] G. Chartrand, D. Erwin, M.A. Henning, P.J. Slater and P. Zhang, The locating-chromatic number of a graph, Bull. Inst. Combin. Appl. 36 (2002) 89–101.
[9] G. Chartrand, D. Erwin, M.A. Henning, P.J. Slater and P. Zhang, Graphs of order n with locating-chromatic number n-1, Discrete Math. 269 (2003) 65–79. https://doi.org/10.1016/S0012-365X(02)00829-4
[10] G. Chartrand, L. Lesniak and P. Zhang, Graphs and digraphs, Fifth Edition (Chapman and Hall/CRC Press, Taylor and Francis Group, 2011).
[11] G. Chartrand, E. Salehi and P. Zhang, The partition dimension of a graph, Aequationes Math. 59 (2000) 45–54. https://doi.org/10.1007/PL00000127
[12] M. Fehr, S. Gosselin and O.R. Oellermann, The partition dimension of Cayley digraphs, Aequationes Math. 71 (2006) 1–18. https://doi.org/10.1007/s00010-005-2800-z
[13] H. Fernau, J.A. Rodríguez-Velázquez and I. González-Yero, On the partition dimension of unicyclic graphs, Bull. Math. Soc. Sci. Math. Roumanie 57(105) (2014) 381–391.
[14] C. Grigorious, S. Stephen, R. Rajan and M. Miller, On the partition dimension of circulant graphs, Comput. J. 60 (2017) 180–184. https://doi.org/10.1093/comjnl/bxw079
[15] F. Harary and R. Melter, On the metric dimension of a graph, Ars Combin. 2 (1976) 191–195.
[16] C. Hernando, M. Mora and I.M. Pelayo, Resolving dominating partitions in graphs, Discrete Appl. Math. 266 (2019) 237–251. https://doi.org/10.1016/j.dam.2018.12.001
[17] J.A. Rodríguez-Velázquez, I. González Yero and M. Lemańska, On the partition dimension of trees, Discrete Appl. Math. 166 (2014) 204–209. https://doi.org/10.1016/j.dam.2013.09.026
[18] P.J. Slater, Leaves of trees, in: Proc. 6th Southeastern Conf. on Combinatorics, Graph Theory, and Computing, Congr. Numer. 14 (1975) 549–559.
[19] P.J. Slater, Dominating and reference sets in a graph, J. Math. Phys. Sci. 22 (1988) 445–455.
[20] D. Welyyanti, E.T. Baskoro, Darmaji, R. Simanjuntak and S. Uttunggadewa, On locating-chromatic number of complete n-ary tree, AKCE Int. J. Graphs Comb. 10 (2013) 309–315.