Edge-maximal graphs with cutwidth at most three
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 3, pp. 635-657

Voir la notice de l'article provenant de la source Library of Science

The cutwidth minimization problem consists of finding an arrangement of the vertices of a graph G on a line P_n with n=|V(G)| vertices, in such a way that the maximum number of edges between each pair of consecutive vertices is minimized. A graph G with cutwidth k (k≥ 1) is edge-maximal if c(G+uv) gt;k for any uv∈{uv: u,v∈ V(G) and uv∉ E(G)}. In this paper, we provide a complete insight to structural properties of edge-maximal graphs with cutwidth at most 3.
Keywords: combinatorics, graph labeling, cutwidth, edge-maximal graph
@article{DMGT_2023_43_3_a3,
     author = {Zhang, Zhen-Kun},
     title = {Edge-maximal graphs with cutwidth at most three},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {635--657},
     publisher = {mathdoc},
     volume = {43},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a3/}
}
TY  - JOUR
AU  - Zhang, Zhen-Kun
TI  - Edge-maximal graphs with cutwidth at most three
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2023
SP  - 635
EP  - 657
VL  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a3/
LA  - en
ID  - DMGT_2023_43_3_a3
ER  - 
%0 Journal Article
%A Zhang, Zhen-Kun
%T Edge-maximal graphs with cutwidth at most three
%J Discussiones Mathematicae. Graph Theory
%D 2023
%P 635-657
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a3/
%G en
%F DMGT_2023_43_3_a3
Zhang, Zhen-Kun. Edge-maximal graphs with cutwidth at most three. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 3, pp. 635-657. http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a3/