@article{DMGT_2023_43_3_a14,
author = {Harant, Jochen and Mohr, Samuel},
title = {New bounds on domination and independence in graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {809--824},
year = {2023},
volume = {43},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a14/}
}
Harant, Jochen; Mohr, Samuel. New bounds on domination and independence in graphs. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 3, pp. 809-824. http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a14/
[1] N. Alon and J.H. Spencer, The Probabilistic Method (John Wiley & Sons, Inc., New York, 2008). https://doi.org/10.1002/9780470277331
[2] E. Angel, R. Campigotto and C. Laforest, A new lower bound on the independence number of graphs, Discrete Appl. Math. 161 (2013) 847–852. https://doi.org/10.1016/j.dam.2012.10.001
[3] R. Bhatia and C. Davis, A better bound on the variance, Amer. Math. Monthly 107 (2000) 353–357. https://doi.org/10.1080/00029890.2000.12005203
[4] P.B. Borwein, On the complexity of calculating factorials, J. Algorithms 6 (1985) 376–380. https://doi.org/10.1016/0196-6774(85)90006-9
[5] Y. Caro, New Results on the Independence Number (Technical Report, Tel-Aviv University, 1979).
[6] G.J. Chang and G.L. Nemhauser, The k-domination and k-stability Problems in sun-free chordal graphs, SIAM J. Algebraic Discrete Methods 5 (1984) 332–345. https://doi.org/10.1137/0605034
[7] W.E. Clark, B. Shekhtman, S. Suen and D.C. Fisher, Upper bounds for the domination number of a graph, Congr. Numer. 132 (1998) 99–123.
[8] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, San Francisco, 1979).
[9] J. Harant and S. Mohr, On Selkow's bound on the independence number of graphs, Discuss. Math. Graph Theory 39 (2019) 655–657. https://doi.org/10.7151/dmgt.2100
[10] J. Harant and A. Pruchnewski, A note on the domination number of a bipartite graph, Ann. Comb. 5 (2001) 175–178. https://doi.org/10.1007/PL00001298
[11] J. Harant and D. Rautenbach, Domination in bipartite graphs, Discrete Math. 309 (2009) 113–122. https://doi.org/10.1016/j.disc.2007.12.051
[12] J. Harant and D. Rautenbach, Independence in connected graphs, Discrete Appl. Math. 159 (2011) 79–86. https://doi.org/10.1016/j.dam.2010.08.029
[13] D. Harvey and J. van der Hoeven, Integer multiplication in time O(n log n) (hal-02070778 (2019)). en.wikipedia.org, Computational Complexity of Mathematical Operations, Arithmetic Functions
[14] A. Schönhage, A.F.W. Grotefeld and E. Vetter, Fast algorithms –- A multitape Turing machine implementation (BI Wissenschafts-Verlag, Mannheim (1994)). en.wikipedia.org, Computational Complexity of Mathematical Operations, Number Theory
[15] S.M. Selkow, A probabilistic lower bound on the independence number of graphs, Discrete Math. 132 (1994) 363–365. https://doi.org/10.1016/0012-365X(93)00102-B
[16] V.K. Wei, A Lower Bound on the Stability Number of a Simple Graph (Technical Report 81-11217-9, Bell Laboratories, Murray Hill, NJ, 1981).