New bounds on domination and independence in graphs
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 3, pp. 809-824
Voir la notice de l'article provenant de la source Library of Science
We propose new bounds on the domination number and on the independence number of a graph and show that our bounds compare favorably to recent ones. Our bounds are obtained by using the Bhatia-Davis inequality linking the variance, the expected value, the minimum, and the maximum of a random variable with bounded distribution.
Keywords:
undirected graph, domination number, independence number, bounds
@article{DMGT_2023_43_3_a14,
author = {Harant, Jochen and Mohr, Samuel},
title = {New bounds on domination and independence in graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {809--824},
publisher = {mathdoc},
volume = {43},
number = {3},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a14/}
}
Harant, Jochen; Mohr, Samuel. New bounds on domination and independence in graphs. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 3, pp. 809-824. http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a14/