Two sufficient conditions for component factors in graphs
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 3, pp. 761-766

Voir la notice de l'article provenant de la source Library of Science

Let G be a graph. For a set ℋ of connected graphs, a spanning subgraph H of a graph G is called an ℋ-factor of G if each component of H is isomorphic to a member of ℋ. An ℋ-factor is also referred as a component factor. If G-e admits an ℋ-factor for any e∈ E(G), then we say that G is an ℋ-factor deleted graph. Let k≥2 be an integer. In this article, we verify that (i) a graph G admits a {K_1,1,K_1,2,…, K_1,k,𝒯(2k+1)}-factor if and only if its binding number bind(G)≥2/2k+1; (ii) a graph G with δ(G)≥2 is a {K_1,1,K_1,2,…,K_1,k,𝒯(2k+1)}-factor deleted graph if its binding number bind(G)≥2/2k-1.
Keywords: graph, minimum degree, binding number, H-factor, H-factor deleted graph
@article{DMGT_2023_43_3_a11,
     author = {Zhou, Sizhong and Bian, Qiuxiang and Sun, Zhiren},
     title = {Two sufficient conditions for component factors in graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {761--766},
     publisher = {mathdoc},
     volume = {43},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a11/}
}
TY  - JOUR
AU  - Zhou, Sizhong
AU  - Bian, Qiuxiang
AU  - Sun, Zhiren
TI  - Two sufficient conditions for component factors in graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2023
SP  - 761
EP  - 766
VL  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a11/
LA  - en
ID  - DMGT_2023_43_3_a11
ER  - 
%0 Journal Article
%A Zhou, Sizhong
%A Bian, Qiuxiang
%A Sun, Zhiren
%T Two sufficient conditions for component factors in graphs
%J Discussiones Mathematicae. Graph Theory
%D 2023
%P 761-766
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a11/
%G en
%F DMGT_2023_43_3_a11
Zhou, Sizhong; Bian, Qiuxiang; Sun, Zhiren. Two sufficient conditions for component factors in graphs. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 3, pp. 761-766. http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a11/