Two sufficient conditions for component factors in graphs
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 3, pp. 761-766 Cet article a éte moissonné depuis la source Library of Science

Voir la notice de l'article

Let G be a graph. For a set ℋ of connected graphs, a spanning subgraph H of a graph G is called an ℋ-factor of G if each component of H is isomorphic to a member of ℋ. An ℋ-factor is also referred as a component factor. If G-e admits an ℋ-factor for any e∈ E(G), then we say that G is an ℋ-factor deleted graph. Let k≥2 be an integer. In this article, we verify that (i) a graph G admits a {K_1,1,K_1,2,…, K_1,k,𝒯(2k+1)}-factor if and only if its binding number bind(G)≥2/2k+1; (ii) a graph G with δ(G)≥2 is a {K_1,1,K_1,2,…,K_1,k,𝒯(2k+1)}-factor deleted graph if its binding number bind(G)≥2/2k-1.
Keywords: graph, minimum degree, binding number, H-factor, H-factor deleted graph
@article{DMGT_2023_43_3_a11,
     author = {Zhou, Sizhong and Bian, Qiuxiang and Sun, Zhiren},
     title = {Two sufficient conditions for component factors in graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {761--766},
     year = {2023},
     volume = {43},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a11/}
}
TY  - JOUR
AU  - Zhou, Sizhong
AU  - Bian, Qiuxiang
AU  - Sun, Zhiren
TI  - Two sufficient conditions for component factors in graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2023
SP  - 761
EP  - 766
VL  - 43
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a11/
LA  - en
ID  - DMGT_2023_43_3_a11
ER  - 
%0 Journal Article
%A Zhou, Sizhong
%A Bian, Qiuxiang
%A Sun, Zhiren
%T Two sufficient conditions for component factors in graphs
%J Discussiones Mathematicae. Graph Theory
%D 2023
%P 761-766
%V 43
%N 3
%U http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a11/
%G en
%F DMGT_2023_43_3_a11
Zhou, Sizhong; Bian, Qiuxiang; Sun, Zhiren. Two sufficient conditions for component factors in graphs. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 3, pp. 761-766. http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a11/

[1] J. Akiyama and M. Kano, Factors and Factorizations of Graphs, Lect. Note Math. 2031 (Springer, Berlin, Heidelberg, 2011). https://doi.org/10.1007/978-3-642-21919-1_1

[2] A. Amahashi and M. Kano, On factors with given components, Discrete Math. 42 (1982) 1–6. https://doi.org/10.1016/0012-365X(82)90048-6

[3] W. Gao, W. Wang and Y. Chen, Tight bounds for the existence of path factors in network vulnerability parameter settings, International Journal of Intelligent Systems 36 (2021) 1133–1158. https://doi.org/10.1002/int.22335

[4] M. Kano, H. Lu and Q. Yu, Component factors with large components in graphs, Appl. Math. Lett. 23 (2010) 385–389. https://doi.org/10.1016/j.aml.2009.11.003

[5] M. Kano, H. Lu and Q. Yu, Fractional factors, component factors and isolated vertex conditions in graphs, Electron. J. Combin. 26(4) (2019) #P4.33. https://doi.org/10.37236/8498

[6] M. Kano and A. Saito, Star-factors with large components, Discrete Math. 312 (2012) 2005–2008. https://doi.org/10.1016/j.disc.2012.03.017

[7] M. Plummer and A. Saito, Toughness, binding number and restricted matching extension in a graph, Discrete Math. 340 (2017) 2665–2672. https://doi.org/10.1016/j.disc.2016.10.003

[8] W.T. Tutte, The 1-factors of oriented graphs, Proc. Amer. Math. Soc. 4 (1953) 922–931. https://doi.org/10.2307/2031831

[9] S. Wang and W. Zhang, Research on fractional critical covered graphs, Probl. Inf. Transm. 56 (2020) 270–277. https://doi.org/10.1134/S0032946020030047

[10] J. Yu and G. Liu, Binding number and minimum degree conditions for graphs to have fractional factors, J. Shandong Univ. 39 (2004) 1–5.

[11] Y. Zhang, G. Yan and M. Kano, Star-like factors with large components, J. Oper. Res. Soc. China 3 (2015) 81–88. https://doi.org/10.1007/s40305-014-0066-7

[12] S. Zhou, Binding numbers and restricted fractional (g,f)-factors in graphs, Discrete Appl. Math. 305 (2021) 350–356. https://doi.org/10.1016/j.dam.2020.10.017

[13] S. Zhou, Remarks on path factors in graphs, RAIRO Oper. Res. 54 (2020) 1827–1834. https://doi.org/10.1051/ro/2019111

[14] S. Zhou, Some results on path-factor critical avoidable graphs, Discuss. Math. Graph Theory 43 (2023) 233–244. https://doi.org/10.7151/dmgt.2364

[15] S. Zhou, H. Liu and Y. Xu, Binding numbers for fractional (a,b,k)-critical covered graphs, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 21 (2020) 115–121.

[16] S. Zhou and Z. Sun, Binding number conditions for P\geq2-factor and P\geq3-factor uniform graphs, Discrete Math. 343(3) (2020) 111715. https://doi.org/10.1016/j.disc.2019.111715

[17] S. Zhou and Z. Sun, Some existence theorems on path factors with given properties in graphs, Acta Math. Sin. (Engl. Ser.) 36 (2020) 917–928. https://doi.org/10.1007/s10114-020-9224-5