A note about monochromatic components in graphs of large minimum degree
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 3, pp. 607-618

Voir la notice de l'article provenant de la source Library of Science

For all positive integers r≥ 3 and n such that r^2-r divides n and an affine plane of order r exists, we construct an r-edge colored graph on n vertices with minimum degree (1-r-2r^2-r)n-2 such that the largest monochromatic component has order less than nr-1. This generalizes an example of Guggiari and Scott and, independently, Rahimi for r=3 and thus disproves a conjecture of Gyárfás and Sárközy for all integers r≥ 3 such that an affine plane of order r exists.
Keywords: Ramsey theory, fractional matchings, block designs
@article{DMGT_2023_43_3_a1,
     author = {DeBiasio, Louis and Krueger, Robert A.},
     title = {A note about monochromatic components in graphs of large minimum degree},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {607--618},
     publisher = {mathdoc},
     volume = {43},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a1/}
}
TY  - JOUR
AU  - DeBiasio, Louis
AU  - Krueger, Robert A.
TI  - A note about monochromatic components in graphs of large minimum degree
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2023
SP  - 607
EP  - 618
VL  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a1/
LA  - en
ID  - DMGT_2023_43_3_a1
ER  - 
%0 Journal Article
%A DeBiasio, Louis
%A Krueger, Robert A.
%T A note about monochromatic components in graphs of large minimum degree
%J Discussiones Mathematicae. Graph Theory
%D 2023
%P 607-618
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a1/
%G en
%F DMGT_2023_43_3_a1
DeBiasio, Louis; Krueger, Robert A. A note about monochromatic components in graphs of large minimum degree. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 3, pp. 607-618. http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a1/