@article{DMGT_2023_43_3_a1,
author = {DeBiasio, Louis and Krueger, Robert A.},
title = {A note about monochromatic components in graphs of large minimum degree},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {607--618},
year = {2023},
volume = {43},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a1/}
}
TY - JOUR AU - DeBiasio, Louis AU - Krueger, Robert A. TI - A note about monochromatic components in graphs of large minimum degree JO - Discussiones Mathematicae. Graph Theory PY - 2023 SP - 607 EP - 618 VL - 43 IS - 3 UR - http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a1/ LA - en ID - DMGT_2023_43_3_a1 ER -
DeBiasio, Louis; Krueger, Robert A. A note about monochromatic components in graphs of large minimum degree. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 3, pp. 607-618. http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a1/
[1] R.J.R. Abel, G. Ge and J. Yin, Resolvable and near-resolvable designs, in: Handbook of Combinatorial Designs, C. Colbourn and J. Dinitz (Ed(s)), (Chapmann & Hall/CRC, Boca Raton 1996).
[2] Y. Chang, The existence of resolvable BIBD with \lambda=1, Acta Math. Appl. Sin. 16 (2000) 373–385. https://doi.org/10.1007/BF02671127
[3] L. DeBiasio, R.A. Krueger and G.N. Sárközy, Large monochromatic components in multicolored bipartite graphs, J. Graph Theory 94 (2020) 117–130. https://doi.org/10.1002/jgt.22510
[4] Z. Füredi, Covering the complete graph by partitions, Discrete Math. 75 (1989) 217–226. https://doi.org/10.1016/0012-365X(89)90088-5
[5] H. Guggiari and A. Scott, Monochromatic components in edge-coloured graphs with large minimum degree (2019). arXiv: 1909.09178v1
[6] A. Gyárfás, Partition coverings and blocking sets in hypergraphs, Commun. Comput. Autom. Inst. Hungar. Acad. Sci. 71 (1977) in Hungarian.
[7] A. Gyárfás and G.N. Sárközy, Large monochromatic components in edge colored graphs with a minimum degree condition, Electron. J. Combin. 24 (2017) #P3.54. https://doi.org/10.37236/7049
[8] A. Gyárfás and G.N. Sárközy, Star versus two stripes Ramsey numbers and a conjecture of Schelp, Combin. Probab. Comput. 21 (2012) 179–186. https://doi.org/10.1017/S0963548311000599
[9] L. Lovász and M.D. Plummer, Matching Theory (AMS Chelsea Publishing, Providence, 2009). https://doi.org/10.1090/chel/367
[10] R.A. Mathon, K.T. Phelps and A. Rosa, Small Steiner triple systems and their properties, Ars Combin. 15 (1983) 3–110.
[11] Z. Rahimi, Large monochromatic components in 3-colored non-complete graphs, J. Combin. Theory Ser. A 175 (2020) 105256. https://doi.org/10.1016/j.jcta.2020.105256
[12] D.K. Ray-Chaudhuri and R.M. Wilson, The existence of resolvable block designs, in: A Survey of Combinatorial Theory, (North-Holland 1973) 361–375. https://doi.org/10.1016/B978-0-7204-2262-7.50035-1