A note about monochromatic components in graphs of large minimum degree
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 3, pp. 607-618
Voir la notice de l'article provenant de la source Library of Science
For all positive integers r≥ 3 and n such that r^2-r divides n and an affine plane of order r exists, we construct an r-edge colored graph on n vertices with minimum degree (1-r-2r^2-r)n-2 such that the largest monochromatic component has order less than nr-1. This generalizes an example of Guggiari and Scott and, independently, Rahimi for r=3 and thus disproves a conjecture of Gyárfás and Sárközy for all integers r≥ 3 such that an affine plane of order r exists.
Keywords:
Ramsey theory, fractional matchings, block designs
@article{DMGT_2023_43_3_a1,
author = {DeBiasio, Louis and Krueger, Robert A.},
title = {A note about monochromatic components in graphs of large minimum degree},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {607--618},
publisher = {mathdoc},
volume = {43},
number = {3},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a1/}
}
TY - JOUR AU - DeBiasio, Louis AU - Krueger, Robert A. TI - A note about monochromatic components in graphs of large minimum degree JO - Discussiones Mathematicae. Graph Theory PY - 2023 SP - 607 EP - 618 VL - 43 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a1/ LA - en ID - DMGT_2023_43_3_a1 ER -
DeBiasio, Louis; Krueger, Robert A. A note about monochromatic components in graphs of large minimum degree. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 3, pp. 607-618. http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a1/