Optimal error-detecting open-locating-dominating set on the infinite triangular grid
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 2, pp. 445-455

Voir la notice de l'article provenant de la source Library of Science

Let G be a graph and S ⊆ V(G) represent a subset of vertices having installed “detectors, quot; each of which is capable of sensing an “intruder quot; in its open-neighborhood. The open-locating-code of v ∈ V(G) is the set of neighboring detectors, N(v) ∩ S. The set S is said to be an open-locating-dominating set if every open-locating-code is unique and non-empty. In this paper we focus on error-detecting open-locating-dominating sets on the infinite triangular grid, present a solution with density 1/2, and prove it is optimal.
Keywords: domination, open-locating-dominating set, error-detection, triangular grid, density
@article{DMGT_2023_43_2_a8,
     author = {Jean, Devin and Seo, Suk J.},
     title = {Optimal error-detecting open-locating-dominating set on the infinite triangular grid},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {445--455},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a8/}
}
TY  - JOUR
AU  - Jean, Devin
AU  - Seo, Suk J.
TI  - Optimal error-detecting open-locating-dominating set on the infinite triangular grid
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2023
SP  - 445
EP  - 455
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a8/
LA  - en
ID  - DMGT_2023_43_2_a8
ER  - 
%0 Journal Article
%A Jean, Devin
%A Seo, Suk J.
%T Optimal error-detecting open-locating-dominating set on the infinite triangular grid
%J Discussiones Mathematicae. Graph Theory
%D 2023
%P 445-455
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a8/
%G en
%F DMGT_2023_43_2_a8
Jean, Devin; Seo, Suk J. Optimal error-detecting open-locating-dominating set on the infinite triangular grid. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 2, pp. 445-455. http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a8/