Optimal error-detecting open-locating-dominating set on the infinite triangular grid
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 2, pp. 445-455 Cet article a éte moissonné depuis la source Library of Science

Voir la notice de l'article

Let G be a graph and S ⊆ V(G) represent a subset of vertices having installed “detectors, quot; each of which is capable of sensing an “intruder quot; in its open-neighborhood. The open-locating-code of v ∈ V(G) is the set of neighboring detectors, N(v) ∩ S. The set S is said to be an open-locating-dominating set if every open-locating-code is unique and non-empty. In this paper we focus on error-detecting open-locating-dominating sets on the infinite triangular grid, present a solution with density 1/2, and prove it is optimal.
Keywords: domination, open-locating-dominating set, error-detection, triangular grid, density
@article{DMGT_2023_43_2_a8,
     author = {Jean, Devin and Seo, Suk J.},
     title = {Optimal error-detecting open-locating-dominating set on the infinite triangular grid},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {445--455},
     year = {2023},
     volume = {43},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a8/}
}
TY  - JOUR
AU  - Jean, Devin
AU  - Seo, Suk J.
TI  - Optimal error-detecting open-locating-dominating set on the infinite triangular grid
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2023
SP  - 445
EP  - 455
VL  - 43
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a8/
LA  - en
ID  - DMGT_2023_43_2_a8
ER  - 
%0 Journal Article
%A Jean, Devin
%A Seo, Suk J.
%T Optimal error-detecting open-locating-dominating set on the infinite triangular grid
%J Discussiones Mathematicae. Graph Theory
%D 2023
%P 445-455
%V 43
%N 2
%U http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a8/
%G en
%F DMGT_2023_43_2_a8
Jean, Devin; Seo, Suk J. Optimal error-detecting open-locating-dominating set on the infinite triangular grid. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 2, pp. 445-455. http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a8/

[1] R. Dantas, F. Havet and R.M. Sampaio, Identifying codes for infinite triangular grids with a finite number of rows, Discrete Math. 340 (2017) 1584–1597. https://doi.org/10.1016/j.disc.2017.02.015

[2] I. Honkala, An optimal locating-dominating set in the infinite triangular grid, Discrete Math. 306 (2006) 2670–2681. https://doi.org/10.1016/j.disc.2006.04.028

[3] R. Kincaid, A. Oldham and G. Yu, On optimal open locating-dominating sets in infinite triangular grids, Discrete Appl. Math. 193 (2015) 139–144. https://doi.org/10.1016/j.dam.2015.04.024

[4] S.J. Seo, Open-locating-domination sets in the infinite king grid, J. Combin. Math. Combin. Comput. 104 (2018) 31–47.

[5] S.J. Seo and P.J. Slater, Open neighborhood locating-dominating sets, Australas. J. Combin. 46 (2010) 109–119.

[6] S.J. Seo and P.J. Slater, Graphical parameters for classes of tumbling block graphs, Congr. Numer. 213 (2012) 155–168.

[7] S.J. Seo and P.J. Slater, Fault tolerant detectors for distinguishing sets in graphs, Discuss. Math. Graph Theory 35 (2015) 797–818. https://doi.org/10.7151/dmgt.1838

[8] P.J. Slater, Fault-tolerant locating-dominating sets, Discrete Math. 249 (2002) 179–189. https://doi.org/10.1016/S0012-365X(01)00244-8

[9] P.J. Slater, A framework for faults in detectors within network monitoring systems, WSEAS Trans. Math. 12 (2013) 911–916.

[10] Watching systems, identifying, locating-dominating and discriminating codes in graphs. https://www.lri.fr/\%7elobstein/debutBIBidetlocdom.pdf