@article{DMGT_2023_43_2_a5,
author = {Katona, Gyula Y. and Varga, Kitti},
title = {Strengthening some complexity results on toughness of graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {401--419},
year = {2023},
volume = {43},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a5/}
}
Katona, Gyula Y.; Varga, Kitti. Strengthening some complexity results on toughness of graphs. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 2, pp. 401-419. http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a5/
[1] D. Bauer, S.L. Hakimi and E. Schmeichel, Recognizing tough graphs is NP-hard, Discrete Appl. Math. 28 (1990) 191–195. https://doi.org/10.1016/0166-218X(90)90001-S
[2] D. Bauer, A. Morgana and E. Schmeichel, On the complexity of recognizing tough graphs, Discrete Math. 124 (1994) 13–17. https://doi.org/10.1016/0012-365X(92)00047-U
[3] D. Bauer, J. van den Heuvel, A. Morgana and E. Schmeichel, The complexity of recognizing tough cubic graphs, Discrete Appl. Math. 79 (1997) 35–44. https://doi.org/10.1016/S0166-218X(97)00030-9
[4] D. Bauer, J. van den Heuvel, A. Morgana and E. Schmeichel, The complexity of toughness in regular graphs, Congr. Numer. 130 (1998) 47–61.
[5] D. Bauer, H.J. Broersma and H.J. Veldman, Not every 2-tough graph is Hamiltonian, Discrete Appl. Math. 99 (2000) 317–321. https://doi.org/10.1016/S0166-218X(99)00141-9
[6] V. Chvátal, Tough graphs and Hamiltonian circuits, Discrete Math. 5 (1973) 215–228. https://doi.org/10.1016/0012-365X(73)90138-6
[7] B. Jackson and P. Katerinis, A characterization of 3/2-tough cubic graphs, Ars Combin. 38 (1994) 145–148.
[8] D. Kratsch, J. Lehel and H. Müller, Toughness, Hamiltonicity and split graphs, Discrete Math. 150 (1996) 231–245. https://doi.org/10.1016/0012-365X(95)00190-8
[9] C.H. Papadimitriou and M. Yannakakis, The complexity of facets (and some facets of complexity), J. Comput. System Sci. 28 (1984) 244–259. https://doi.org/10.1016/0022-0000(84)90068-0