Scaffold for the polyhedral embedding of cubic graphs
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 2, pp. 351-384 Cet article a éte moissonné depuis la source Library of Science

Voir la notice de l'article

Let G be a cubic graph and Π be a polyhedral embedding of this graph. The extended graph, G^e, of Π is the graph whose set of vertices is V(G^e)=V(G) and whose set of edges E(G^e) is equal to E(G) ∪𝒮, where 𝒮 is constructed as follows: given two vertices t_0 and t_3 in V(G^e) we say [t_0 t_3] ∈𝒮, if there is a 3-path, (t_0 t_1 t_2 t_3) ∈ G that is a Π-facial subwalk of the embedding. We prove that there is a one to one correspondence between the set of possible extended graphs of G and polyhedral embeddings of G.
Keywords: cubic graph, polyhedral embedding
@article{DMGT_2023_43_2_a3,
     author = {Aguilar-Campos, Flor and Araujo-Pardo, Gabriela and Garc{\'\i}a-Col{\'\i}n, Natalia},
     title = {Scaffold for the polyhedral embedding of cubic graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {351--384},
     year = {2023},
     volume = {43},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a3/}
}
TY  - JOUR
AU  - Aguilar-Campos, Flor
AU  - Araujo-Pardo, Gabriela
AU  - García-Colín, Natalia
TI  - Scaffold for the polyhedral embedding of cubic graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2023
SP  - 351
EP  - 384
VL  - 43
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a3/
LA  - en
ID  - DMGT_2023_43_2_a3
ER  - 
%0 Journal Article
%A Aguilar-Campos, Flor
%A Araujo-Pardo, Gabriela
%A García-Colín, Natalia
%T Scaffold for the polyhedral embedding of cubic graphs
%J Discussiones Mathematicae. Graph Theory
%D 2023
%P 351-384
%V 43
%N 2
%U http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a3/
%G en
%F DMGT_2023_43_2_a3
Aguilar-Campos, Flor; Araujo-Pardo, Gabriela; García-Colín, Natalia. Scaffold for the polyhedral embedding of cubic graphs. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 2, pp. 351-384. http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a3/

[1] J.L. Arocha, J. Bracho, N. García-Colín and I. Hubard, Reconstructing surface triangulations by their intersection matrices, Discuss. Math. Graph Theory 35 (2015) 483–491. https://doi.org//10.7151/dmgt.1816

[2] B. Mohar, Existence of polyhedral embeddings of graphs, Combinatorica 21 (2001) 395–401. https://doi.org/10.1007/s004930100003

[3] B. Mohar, Uniqueness and minimality of large face-width embeddings of graphs, Combinatorica 15 (1995) 541–556. https://doi.org/10.1007/BF01192526

[4] B. Mohar and N. Robertson, Flexibility of polyhedral embeddings of graphs in surfaces, J. Combin. Theory Ser. B 83 (2001) 38–57. https://doi.org/10.1006/jctb.2001.2036

[5] B. Mohar and A. Vodopivec, On polyhedral embeddings of cubic graphs, Combin. Probab. Comput. 15 (2006) 877–893. https://doi.org/10.1017/S0963548306007607

[6] G. Ringel, Map Color Theorem (Springer-Verlag, 1974). https://doi.org/10.1007/978-3-642-65759-7

[7] N. Robertson and R. Vitray, Representativity of surface embeddings, in: aths, Flows, and VLSI-Layout, (Springer-Verlag 1990) 293–328.

[8] P. Seymour and R. Thomas, Uniqueness of highly representative surface embeddings, J. Graph Theory 23 (1966) 337–349. https://doi.org/10.1002/(SICI)1097-0118(199612)23:43.0.CO;2-S

[9] H. Whitney, 2-isomorphic graphs, Amer. J. Math. 55 (1933) 245–254. https://doi.org/10.2307/2371127