@article{DMGT_2023_43_2_a2,
author = {Lortz, Roland and Mengersen, Ingrid},
title = {On the {Ramsey} numbers of non-star trees versus connected graphs of order six},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {331--349},
year = {2023},
volume = {43},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a2/}
}
TY - JOUR AU - Lortz, Roland AU - Mengersen, Ingrid TI - On the Ramsey numbers of non-star trees versus connected graphs of order six JO - Discussiones Mathematicae. Graph Theory PY - 2023 SP - 331 EP - 349 VL - 43 IS - 2 UR - http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a2/ LA - en ID - DMGT_2023_43_2_a2 ER -
Lortz, Roland; Mengersen, Ingrid. On the Ramsey numbers of non-star trees versus connected graphs of order six. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 2, pp. 331-349. http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a2/
[1] S.A. Burr, P. Erdős, R.J. Faudree, C.C. Rousseau and R.H. Schelp, Some complete bipartite graph-tree Ramsey numbers, Ann. Discrete Math. 41 (1989) 79–89. https://doi.org/10.1016/S0167-5060(08)70452-7
[2] G. Chartrand, R.J. Gould and A.D. Polimeni, On Ramsey numbers of forests versus nearly complete graphs, J. Graph Theory 4 (1980) 233–239. https://doi.org/10.1002/jgt.3190040211
[3] V. Chvátal, Tree-complete graph Ramsey numbers, J. Graph Theory 1 (1977) 93. https://doi.org/10.1002/jgt.3190010118
[4] V. Chvátal and F. Harary, Generalized Ramsey theory for graphs III:} Small off-diagonal numbers, Pacific J. Math. 41 (1972) 335–345. https://doi.org/10.2140/pjm.1972.41.335
[5] M. Clancy, Some small Ramsey numbers, J. Graph Theory 1 (1977) 89–91. https://doi.org/10.1002/jgt.3190010117
[6] P. Erdős, R.J. Faudree, C.C. Rousseau and R.H. Schelp, The book-tree Ramsey numbers, Scientia, Ser. A: Math. Sci. 1 (1988) 111–117.
[7] R.J. Faudree, C.C. Rousseau and R.H. Schelp, Small order graph-tree Ramsey numbers, Discrete Math. 72 (1988) 119–127. https://doi.org/10.1016/0012-365X(88)90200-2
[8] R.J. Gould and M.S. Jacobson, On the Ramsey number of trees versus graphs with large clique number, J. Graph Theory 7 (1983) 71–78. https://doi.org/10.1002/jgt.3190070109
[9] Y.B. Guo and L. Volkmann, Tree-Ramsey numbers, Australas. J. Combin. 11 (1995) 169–175.
[10] F. Harary, Recent results on generalized Ramsey theory for graphs, in: Graph Theory and Applications, Lecture Notes in Mathematics Vol. 303, Y. Alavi et al. (Ed(s)), (Springer, Berlin 1972) 125–138.
[11] R. Lortz and I. Mengersen, On the Ransey numbers for stars versus connected graphs of order six, Australas. J. Combin. 73 (2019) 1–24.
[12] R. Lortz and I. Mengersen, On the Ramsey numbers r(Sn,K6-3K2), J. Combin. Math. Combin. Comput.}, to appear.
[13] R. Lortz and I. Mengersen, All missing Ramsey numbers for trees versus the four-page book, submitted.
[14] T.D. Parsons, Path-star Ramsey numbers, J. Combin. Theory Ser. B 17 (1974) 51–58. https://doi.org/10.1016/0095-8956(74)90048-3
[15] T.D. Parsons, Ramsey graphs and block designs I}, Trans. Amer. Math. Soc. 209 (1975) 33–44. https://doi.org/10.1090/S0002-9947-1975-0396317-X
[16] A. Pokrovskiy and B. Sudakov, Ramsey goodness of paths, J. Combin. Theory Ser. B 122 (2017) 384–390. https://doi.org/10.1016/j.jctb.2016.06.009
[17] S.P. Radziszowski, Small Ramsey numbers, Electron. J. Combin. (2017) #DS1.15. https://doi.org/10.37236/21
[18] C.C. Rousseau and J. Sheehan, A class of Ramsey problems involving trees, J. Lond. Math. Soc. (2) 18 (1978) 392–396. https://doi.org/10.1112/jlms/s2-18.3.392
[19] Y. Wu, Y. Sun, R. Zhang and S.P. Radziszowski, Ramsey numbers of C4 versus wheels and stars, Graphs Combin. 31 (2015) 2437–2446. https://doi.org/10.1007/s00373-014-1504-3