Generalized Turán problems for small graphs
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 2, pp. 549-572

Voir la notice de l'article provenant de la source Library of Science

For graphs H and F, the generalized Turán number ex(n,H,F) is the largest number of copies of H in an F-free graph on n vertices. We consider this problem when both H and F have at most four vertices. We give sharp results in almost all cases, and connect the remaining cases to well-known unsolved problems. Our main new contribution is applying the progressive induction method of Simonovits for generalized Turán problems.
Keywords: generalized Turán problem, extremal
@article{DMGT_2023_43_2_a15,
     author = {Gerbner, D\'aniel},
     title = {Generalized {Tur\'an} problems for small graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {549--572},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a15/}
}
TY  - JOUR
AU  - Gerbner, Dániel
TI  - Generalized Turán problems for small graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2023
SP  - 549
EP  - 572
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a15/
LA  - en
ID  - DMGT_2023_43_2_a15
ER  - 
%0 Journal Article
%A Gerbner, Dániel
%T Generalized Turán problems for small graphs
%J Discussiones Mathematicae. Graph Theory
%D 2023
%P 549-572
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a15/
%G en
%F DMGT_2023_43_2_a15
Gerbner, Dániel. Generalized Turán problems for small graphs. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 2, pp. 549-572. http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a15/