@article{DMGT_2023_43_2_a14,
author = {Kitaev, Sergey and Pyatkin, Artem V.},
title = {On semi-transitive orientability of triangle-free graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {533--547},
year = {2023},
volume = {43},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a14/}
}
Kitaev, Sergey; Pyatkin, Artem V. On semi-transitive orientability of triangle-free graphs. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 2, pp. 533-547. http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a14/
[1] P. Akrobotu, S. Kitaev and Z. Maśarova, On word-representability of polyomino triangulations, Siberian Adv. Math. 25 (2015) 1–10. https://doi.org/10.3103/S1055134415010010
[2] J.-C. Bermond, F. Comellas and D.F. Hsu, Distributed loop computer networks: A survey, J. Parallel Distributed Comput. 24 (1995) 2–10. https://doi.org/10.1006/jpdc.1995.1002
[3] F. Boesch and R. Tindell, Circulants and their connectivity, J. Graph Theory 8 (1984) 487–499. https://doi.org/10.1002/jgt.3190080406
[4] G.-S. Cheon, J. Kim, M. Kim and S. Kitaev, Word-representability of Toeplitz graphs, Discrete Appl. Math. 270 (2019) 96–105. https://doi.org/10.1016/j.dam.2019.07.013
[5] V. Chvátal, The smallest triangle-free 4-chromatic 4-regular graph, J. Combin. Theory 9 (1970) 93–94. https://doi.org/10.1016/S0021-9800(70)80057-6
[6] P. Erdős, Graph theory and probability, Canad. J. Math. 11 (1959) 34–38.
[7] S.H. Ghorban, Toeplitz graph decomposition, Trans. Comb. 1(4) (2012) 35–41.
[8] M. Glen, \textrm{ Software} (available at). personal.strath.ac.uk/sergey.kitaev/word-representable-graphs.html
[9] J. Goedgebeur, On minimal triangle-free 6-chromatic graphs (2018). arXiv: 1707.07581v3
[10] M.M. Halldórsson, S. Kitaev and A. Pyatkin, Alternation graphs, in: Graph-Theoretic Concepts in Computer Science, Lecture Notes in Comput. Sci. 6986 (2011) 191–202. https://doi.org/10.1007/978-3-642-25870-1_18
[11] M.M. Halldórsson, S. Kitaev and A. Pyatkin, Semi-transitive orientations and word-representable graphs, Discrete Appl. Math. 201 (2016) 164–171. https://doi.org/10.1016/j.dam.2015.07.033
[12] C. Heuberger, On planarity and colorability of circulant graphs, Discrete Math. 268 (2003) 153–169. https://doi.org/10.1016/S0012-365X(02)00685-4
[13] T.R. Jensen and B. Toft, Graph Coloring Problems (New York, John Wiley & Sons, 1995). https://doi.org/10.1002/9781118032497
[14] S. Kitaev, A comprehensive introduction to the theory of word-representable graphs, in: Developments in Language Theory, Lecture Notes in Comput. Sci. 10396 (2017) 36–67. https://doi.org/10.1007/978-3-319-62809-7_2
[15] S. Kitaev and V. Lozin, Words and Graphs (Springer, 2015). https://doi.org/10.1007/978-3-319-25859-1
[16] S. Kitaev and A. Saito, On semi-transitive orientability of Kneser graphs and their complements, Discrete Math. 343 (2020) 111909. https://doi.org/10.1016/j.disc.2020.111909
[17] W. Pegden, Critical graphs without triangles: An optimum density construction, Combinatorica 33 (2013) 495–512. https://doi.org/10.1007/s00493-013-2440-1
[18] B. Toft, On the maximal number of edges of critical k-chromatic graphs, Studia Sci. Math. Hungar. 5 (1970) 461–470.
[19] L.M. Vitaver, Determination of minimal coloring of vertices of a graph by means of Boolean powers of the incidence matrix, Dokl. Akad. Nauk SSSR 147 (1962) 758–759, in Russian.