@article{DMGT_2023_43_2_a12,
author = {Haslegrave, John},
title = {Countable graphs are majority 3-choosable},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {499--506},
year = {2023},
volume = {43},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a12/}
}
Haslegrave, John. Countable graphs are majority 3-choosable. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 2, pp. 499-506. http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a12/
[1] R. Aharoni, E.C. Milner and K. Prikry, Unfriendly partitions of a graph, J. Combin. Theory Ser. B 50 (1990) 1–10. https://doi.org/10.1016/0095-8956(90)90092-E
[2] M. Anholcer, B. Bosek and J. Grytczuk, Majority choosability of digraphs, Electron. J. Combin. 24 (2017) #P3.57. https://doi.org/10.37236/6923
[3] M. Anholcer, B. Bosek and J. Grytczuk, Majority coloring of infinite digraphs, Acta Math. Univ. Comenian. (N.S.) 88 (2019) 371–376.
[4] M. Anholcer, B. Bosek and J. Grytczuk, Majority choosability of countable graphs (2020). arXiv: 2003.02883
[5] E. Berger, Unfriendly partitions for graphs not containing a subdivision of an infinite clique, Combinatorica 37 (2017) 157–166. https://doi.org/10.1007/s00493-015-3261-1
[6] H. Bruhn, R. Diestel, A. Georgakopoulos and P. Sprüssel, Every rayless graph has an unfriendly partition, Combinatorica 30 (2010) 521–532. https://doi.org/10.1007/s00493-010-2590-3
[7] P. Erdős, A.L. Rubin and H. Taylor, Choosability in graphs, in: Proceedings of the West Coast Conference on Combinatorics, Graph Theory and Computing, P.Z. Chinn and D. McCarthy (Ed(s)), (Util. Math., Winnipeg, Man. 1980) 125–157.
[8] Z. Dvořák and L. Postle, Correspondence coloring and its application to list-coloring planar graphs without cycles of lengths 4 to 8, J. Combin. Theory Ser. B 129 (2018) 38–54. https://doi.org/10.1016/j.jctb.2017.09.001
[9] A. Girão, T. Kittipassorn and K. Popielarz, Generalized majority colourings of digraphs, Combin. Probab. Comput. 26 (2017) 850–855. https://doi.org/10.1017/S096354831700044X
[10] F. Knox and R. Šámal, Linear bound for majority colourings of digraphs, Electron. J. Combin. 25 (2018) #P3.29. https://doi.org/10.37236/6762
[11] S. Kreutzer, S. Oum, P. Seymour, D. van der Zypen and D.R. Wood, Majority colourings of digraphs, Electron. J. Combin. 24 (2017) #P2.25. https://doi.org/10.37236/6410
[12] L. Lovász, On decomposition of graphs, Studia Sci. Math. Hungar. 1 (1966) 237–238.
[13] S. Shelah and E.C. Milner, Graphs with no unfriendly partitions, in: A Tribute to Paul Erdős, A. Baker, B. Bollobás and A. Hajnal (Ed(s)), (Cambridge Univ. Press, Cambridge 1990) 373–384.
[14] V.G. Vizing, Vertex colorings with given colors, Diskret. Analiz 29 (1976) 3–10, in Russian.