Metric dimension and diameter in bipartite graphs
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 2, pp. 487-498
Voir la notice de l'article provenant de la source Library of Science
Let G be a connected graph and W a set of vertices of G. If every vertex of G is determined by its distances to the vertices in W, then W is said to be a resolving set. The cardinality of a minimum resolving set is called the metric dimension of G. In this paper we determine the maximum number of vertices in a bipartite graph of given metric dimension and diameter. We also determine the minimum metric dimension of a bipartite graph of given maximum degree.
Keywords:
metric dimension, resolving set, diameter, maximum degree, bipartite graph
@article{DMGT_2023_43_2_a11,
author = {Dankelmann, Peter and Morgan, Jane and Rivett-Carnac, Emily},
title = {Metric dimension and diameter in bipartite graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {487--498},
publisher = {mathdoc},
volume = {43},
number = {2},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a11/}
}
TY - JOUR AU - Dankelmann, Peter AU - Morgan, Jane AU - Rivett-Carnac, Emily TI - Metric dimension and diameter in bipartite graphs JO - Discussiones Mathematicae. Graph Theory PY - 2023 SP - 487 EP - 498 VL - 43 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a11/ LA - en ID - DMGT_2023_43_2_a11 ER -
Dankelmann, Peter; Morgan, Jane; Rivett-Carnac, Emily. Metric dimension and diameter in bipartite graphs. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 2, pp. 487-498. http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a11/