Metric dimension and diameter in bipartite graphs
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 2, pp. 487-498

Voir la notice de l'article provenant de la source Library of Science

Let G be a connected graph and W a set of vertices of G. If every vertex of G is determined by its distances to the vertices in W, then W is said to be a resolving set. The cardinality of a minimum resolving set is called the metric dimension of G. In this paper we determine the maximum number of vertices in a bipartite graph of given metric dimension and diameter. We also determine the minimum metric dimension of a bipartite graph of given maximum degree.
Keywords: metric dimension, resolving set, diameter, maximum degree, bipartite graph
@article{DMGT_2023_43_2_a11,
     author = {Dankelmann, Peter and Morgan, Jane and Rivett-Carnac, Emily},
     title = {Metric dimension and diameter in bipartite graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {487--498},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a11/}
}
TY  - JOUR
AU  - Dankelmann, Peter
AU  - Morgan, Jane
AU  - Rivett-Carnac, Emily
TI  - Metric dimension and diameter in bipartite graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2023
SP  - 487
EP  - 498
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a11/
LA  - en
ID  - DMGT_2023_43_2_a11
ER  - 
%0 Journal Article
%A Dankelmann, Peter
%A Morgan, Jane
%A Rivett-Carnac, Emily
%T Metric dimension and diameter in bipartite graphs
%J Discussiones Mathematicae. Graph Theory
%D 2023
%P 487-498
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a11/
%G en
%F DMGT_2023_43_2_a11
Dankelmann, Peter; Morgan, Jane; Rivett-Carnac, Emily. Metric dimension and diameter in bipartite graphs. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 2, pp. 487-498. http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a11/