@article{DMGT_2023_43_2_a11,
author = {Dankelmann, Peter and Morgan, Jane and Rivett-Carnac, Emily},
title = {Metric dimension and diameter in bipartite graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {487--498},
year = {2023},
volume = {43},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a11/}
}
TY - JOUR AU - Dankelmann, Peter AU - Morgan, Jane AU - Rivett-Carnac, Emily TI - Metric dimension and diameter in bipartite graphs JO - Discussiones Mathematicae. Graph Theory PY - 2023 SP - 487 EP - 498 VL - 43 IS - 2 UR - http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a11/ LA - en ID - DMGT_2023_43_2_a11 ER -
Dankelmann, Peter; Morgan, Jane; Rivett-Carnac, Emily. Metric dimension and diameter in bipartite graphs. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 2, pp. 487-498. http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a11/
[1] L. Beaudou, P. Dankelmann, F. Foucaud, M.A. Henning, A. Mary and A. Parreau, Bounding the order of a graph using its diameter and metric dimension: A study through tree decompositions and VC dimension, SIAM J. Discrete Math. 32 (2018) 902–918. https://doi.org/10.1137/16M1097833
[2] G. Chartrand, L. Eroh, M. Johnson and O.R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math. 105 (2000) 99–113. https://doi.org/10.1016/S0166-218X(00)00198-0
[3] G. Chartrand, G. Poisson and P. Zhang, Resolvability and the upper dimension of graphs, Comput. Math. Appl. 39 (2000) 20–28. https://doi.org/10.1016/S0898-1221(00)00126-7
[4] L. Eroh, C.X. Kang and E. Yi, A comparison between the metric dimension and zero-forcing number of trees and unicylic graphs, Acta Math. Sin. (Engl. Ser.) 33 (2017) 731–747. https://doi.org/10.1007/s10114-017-4699-4
[5] F. Harary and R.A. Melter, On the metric dimension of a graph, Ars Combin. 2 (1976) 191–195.
[6] F. Foucaud, G.B. Mertzios, R. Naserasr, A. Parreau and P. Valicov, Identification, location-domination and metric dimension on interval and permutation graphs: I.} Bounds, Theoret. Comput. Sci. 668 (2017) 43–58. https://doi.org/10.1016/j.tcs.2017.01.006
[7] C. Hernando, M. Mora, I.M. Pelayo, C. Seara and D.R. Wood, Extremal graph theory for metric dimension and diameter, Electron. J. Combin. 17 (2010) #R30. https://doi.org/10.37236/302
[8] S. Khuller, B. Raghavachari and A. Rosenfield, Landmarks in graphs, Discrete Appl. Math. 70 (1996) 217–229. https://doi.org/10.1016/0166-218X(95)00106-2
[9] D. Kuziak, J.A. Rodríguez-Velázquez and I.G. Yero, Computing the metric dimension of graphs from primary subgraphs, Discuss. Math. Graph Theory 37 (2017) 273–293. https://doi.org/10.7151/dmgt.1934
[10] G. Moravcik, O.R. Oellermann and S. Yusim, Comparing the metric and strong dimensions of a graph, Discrete Appl. Math. 220 (2017) 68–79. https://doi.org/10.1016/j.dam.2016.12.020
[11] P.J. Slater, Leaves of trees, Congr. Numer. 14 (1975) 549–559.
[12] T. Vetrík, The metric dimension of circulant graphs, Canad. Math. Bull. 60 (2017) 206–216. https://doi.org/10.4153/CMB-2016-048-1
[13] T. Vetrík, On the metric dimension of directed and undirected circulant graphs, Discuss. Math. Graph Theory 40 (2020) 67–76. https://doi.org/10.7151/dmgt.2110
[14] I.G. Yero, D. Kuziak and J.A. Rodríguez-Velázquez, On the metric dimension of corona product graphs, Comput. Math. Appl. 61 (2011) 2793–2798. https://doi.org/10.1016/j.camwa.2011.03.046