@article{DMGT_2023_43_2_a1,
author = {James, Tijo and Vijayakumar, Ambat},
title = {Domination game: {Effect} of edge contraction and edge subdivision},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {313--329},
year = {2023},
volume = {43},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a1/}
}
TY - JOUR AU - James, Tijo AU - Vijayakumar, Ambat TI - Domination game: Effect of edge contraction and edge subdivision JO - Discussiones Mathematicae. Graph Theory PY - 2023 SP - 313 EP - 329 VL - 43 IS - 2 UR - http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a1/ LA - en ID - DMGT_2023_43_2_a1 ER -
James, Tijo; Vijayakumar, Ambat. Domination game: Effect of edge contraction and edge subdivision. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 2, pp. 313-329. http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a1/
[1] B. Brešar, Cs. Bujtás, T. Gologranc, S. Klavžar, G. Košmrlj, T. Marc, B. Patkós, Zs. Tuza and M. Vizer, The variety of domination games, Aequationes Math. 93 (2019) 1085–1109. https://doi.org/10.1007/s00010-019-00661-w
[2] B. Brešar, P. Dorbec, S. Klavžar and G. Košmrlj, How long can one bluff in the domination game?, Discuss. Math. Graph Theory 37 (2017) 337–352. https://doi.org/10.7151/dmgt.1899
[3] B. Brešar, P. Dorbec, S. Klavžar, G. Košmrlj and G. Renault, Complexity of the game domination problem, Theoret. Comput. Sci. 648 (2016) 1–7. https://doi.org/10.1016/j.tcs.2016.07.025
[4] B. Brešar, S. Klavžar, G. Košmrlj and D.F. Rall, Domination game: Extremal families of graphs for the 3/5-conjectures, Discrete Appl. Math. 161 (2013) 1308–1316. https://doi.org/10.1016/j.dam.2013.01.025
[5] B. Brešar, S. Klavžar and D.F. Rall, Domination game and an imagination strategy, SIAM J.\ Discrete Math. 24 (2010) 979–991. https://doi.org/10.1137/100786800
[6] B. Brešar, S. Klavžar and D.F. Rall, Domination game played on trees and spanning subgraphs, Discrete Math. 313 (2013) 915–923. https://doi.org/10.1016/j.disc.2013.01.014
[7] B. Brešar, P. Dorbec, S. Klavžar and G. Košmrlj, Domination game: Effect of edge- and vertex-removal, Discrete Math. 330 (2014) 1–10. https://doi.org/10.1016/j.disc.2014.04.015
[8] Cs. Bujtás, Domination game on trees without leaves at distance four, in: Proceedings of the 8th Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications, A. Frank, A. Recski and G. Wiener (Ed(s)), (Veszprém, Hungary June 4–7, 2013) 73–78.
[9] Cs. Bujtás, Domination game on forests, Discrete Math. 338 (2015) 2220–2228. https://doi.org/10.1016/j.disc.2015.05.022
[10] Cs. Bujtás, On the game domination number of graphs with given minimum degree, Electron. J. Combin. 22 (2015) #P3.29. https://doi.org/10.37236/4497
[11] P. Dorbec, G. Košmrlj and G. Renault, The domination game played on unions of graphs, Discrete Math. 338 (2015) 71–79. https://doi.org/10.1016/j.disc.2014.08.024
[12] M.A. Henning and W.B. Kinnersley, Domination game: A proof of the 3/5-conjecture for graphs with minimum degree at least two, SIAM J. Discrete Math. 30 (2016) 20–35. https://doi.org/10.1137/140976935
[13] T. James, P. Dorbec and A. Vijayakumar, Further progress on the heredity of the game domination number, Lecture Notes in Comput. Sci. 10398 (2017) 435–444. https://doi.org/10.1007/978-3-319-64419-6_55
[14] W.B. Kinnersley, D.B. West and R. Zamani, Extremal problems for game domination number, SIAM J. Discrete Math. 27 (2013) 2090–2107. https://doi.org/10.1137/120884742
[15] G. Košmrlj, Domination game on paths and cycles, Ars Math. Contemp. 13 (2017) 125–136. https://doi.org/10.26493/1855-3974.891.e93
[16] S. Schmidt, The 3/5-conjecture for weakly S(K1,3)-free forests, Discrete Math. 339 (2016) 2767–2774. https://doi.org/10.1016/j.disc.2016.05.017
[17] K. Xu and X. Li, On domination game stable graphs and domination game edge-critical graphs, Discrete Appl. Math. 250 (2018) 47–56. https://doi.org/10.1016/j.dam.2018.05.027
[18] K. Xu, X. Li and S. Klavžar, On graphs with largest possible game domination number, Discrete Math. 341 (2018) 1768–1777. https://doi.org/10.1016/j.disc.2017.10.024