@article{DMGT_2023_43_1_a9,
author = {Wocjan, Pawel and Elphick, Clive and Anekstein, David},
title = {More tales of {Hoffman:} bounds for the vector chromatic number of a graph},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {159--169},
year = {2023},
volume = {43},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a9/}
}
TY - JOUR AU - Wocjan, Pawel AU - Elphick, Clive AU - Anekstein, David TI - More tales of Hoffman: bounds for the vector chromatic number of a graph JO - Discussiones Mathematicae. Graph Theory PY - 2023 SP - 159 EP - 169 VL - 43 IS - 1 UR - http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a9/ LA - en ID - DMGT_2023_43_1_a9 ER -
%0 Journal Article %A Wocjan, Pawel %A Elphick, Clive %A Anekstein, David %T More tales of Hoffman: bounds for the vector chromatic number of a graph %J Discussiones Mathematicae. Graph Theory %D 2023 %P 159-169 %V 43 %N 1 %U http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a9/ %G en %F DMGT_2023_43_1_a9
Wocjan, Pawel; Elphick, Clive; Anekstein, David. More tales of Hoffman: bounds for the vector chromatic number of a graph. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 1, pp. 159-169. http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a9/
[1] T. Ando and M. Lin, Proof of a conjectured lower bound on the chromatic number of a graph, Linear Algebra Appl. 485 (2015) 480–484. https://doi.org/10.1016/j.laa.2015.08.007
[2] R. Bhatia, Matrix Analysis (Springer, 1997). https://doi.org/10.1007/978-1-4612-0653-8
[3] Y. Bilu, Tales of Hoffman: Three extensions of Hoffman's bound on the chromatic number, J. Combin. Theory Ser. B 96 (2006) 608–613. https://doi.org/10.1016/j.jctb.2005.10.002
[4] C. Elphick and P. Wocjan, Unified spectral bounds on the chromatic number, Discuss. Math. Graph Theory 35 (2015) 773–780. https://doi.org//10.7151/dmgt.1835
[5] C. Elphick and P. Wocjan, Spectral lower bounds on the quantum chromatic number of a graph, J. Combin. Theory Ser. A 168 (2019) 338–347. https://doi.org/10.1016/j.jcta.2019.06.008
[6] U. Feige, M. Langberg and G. Schechtman, Graphs with tiny vector chromatic number and huge chromatic numbers, SIAM J. Comput. 33 (2004) 1338–1368. https://doi.org/10.1137/S0097539703431391
[7] A. Galtman, Spectral characterizations of the Lovász number and the Delsarte number of a graph, J. Algebraic Combin. 12 (2000) 131–143. https://doi.org/10.1023/A:1026587926110
[8] C. Godsil, D.E. Roberson, R. Šamal and S. Severini, Sabidussi versus Hedetniemi for three variations of the chromatic number, Combinatorica 36 (2016) 395–415. https://doi.org/10.1007/s00493-014-3132-1
[9] C. Godsil, D.E. Roberson, B. Rooney, R. Šamal and A. Varvitsiotis, Graph homomorphisms via vector colorings, European J. Combin. 79 (2016) 244–261. https://doi.org/10.1016/j.ejc.2019.04.001
[10] A.J. Hoffman, On Eigenvalues and Colorings of Graphs, in: Graph Theory and its Applications, B. Harris, Ed. (Acad. Press, New York, 1970).
[11] D. Karger, R. Motwani and M. Sudan, Approximate graph coloring by semidefinite programming, J. ACM 45 (1998) 246–265. https://doi.org/10.1145/274787.274791
[12] L. Yu. Kolotilina, Inequalities for the extreme eigenvalues of block-partitioned Hermitian matrices with applications to spectral graph theory, J. Math. Sci. 176 (2011) 44–56 (translated from Zap. Nauchn. Sem. POMI 382 (2010) 82–103). https://doi.org/10.1007/s10958-011-0392-9
[13] L.S. de Lima, C.S. Oliveira, N.M.M. de Abreu and V. Nikiforov, The smallest eigenvalue of the signless Laplacian, Linear Algebra Appl. 435 (2011) 2570–2584. https://doi.org/10.1016/j.laa.2011.03.059
[14] L. Lovász, On the Shannon capacity of a graph, IEEE Trans. Inform. Theory 25 (1979) 1–7. https://doi.org/10.1109/TIT.1979.1055985
[15] C. Meyer, Matrix Analysis and Applied Linear Algebra (SIAM, 2000).
[16] V. Nikiforov, Chromatic number and spectral radius, Linear Algebra Appl. 426 (2007) 810–814. https://doi.org/10.1016/j.laa.2007.06.005
[17] D.E. Roberson, Variations on a Theme: Graph Homomorphisms, PhD Thesis (University of Waterloo, 2013).
[18] P. Wocjan and C. Elphick, New spectral bounds on the chromatic number encompassing all eigenvalues of the adjacency matrix, Electron. J. Combin. 20 (2013) #P39. https://doi.org/10.37236/2735
[19] P. Wocjan and C. Elphick, Spectral lower bounds for the orthogonal and projective ranks of a graph, Electron. J. Combin. 26 (2019) #P3.45. https://doi.org/10.37236/8183
[20] X. Zhan, \textrm{Matrix Inequalities}, Lect. Notes Math. 1790 ( Springer, 2002). https://doi.org/10.1007/b83956
[21] More Tales of Hoffman: bounds for the vector chromatic number of a graph,. https://github.com/aneksteind/MoreTalesOfHoffman