Elimination properties for minimal dominating sets of graphs
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 1, pp. 137-149 Cet article a éte moissonné depuis la source Library of Science

Voir la notice de l'article

A dominating set of a graph is a vertex subset such that every vertex not in the subset is adjacent to at least one in the subset. In this paper we study whenever there exists a new dominating set contained (respectively, containing) the subset obtained by removing a common vertex from the union of two minimal dominating sets. A complete description of the graphs satisfying such elimination properties is provided.
Keywords: dominating sets, elimination properties, uniform clutters
@article{DMGT_2023_43_1_a7,
     author = {Mart{\'\i}-Farr\'e, Jaume and Mora, Merc\'e and Puertas, Maria Luz and Ruiz, Jos\'e Luis},
     title = {Elimination properties for minimal dominating sets of graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {137--149},
     year = {2023},
     volume = {43},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a7/}
}
TY  - JOUR
AU  - Martí-Farré, Jaume
AU  - Mora, Mercé
AU  - Puertas, Maria Luz
AU  - Ruiz, José Luis
TI  - Elimination properties for minimal dominating sets of graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2023
SP  - 137
EP  - 149
VL  - 43
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a7/
LA  - en
ID  - DMGT_2023_43_1_a7
ER  - 
%0 Journal Article
%A Martí-Farré, Jaume
%A Mora, Mercé
%A Puertas, Maria Luz
%A Ruiz, José Luis
%T Elimination properties for minimal dominating sets of graphs
%J Discussiones Mathematicae. Graph Theory
%D 2023
%P 137-149
%V 43
%N 1
%U http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a7/
%G en
%F DMGT_2023_43_1_a7
Martí-Farré, Jaume; Mora, Mercé; Puertas, Maria Luz; Ruiz, José Luis. Elimination properties for minimal dominating sets of graphs. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 1, pp. 137-149. http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a7/

[1] V. Anusuya and R. Kala, A note on disjoint dominating sets in graphs, Int. J. Contemp. Math. Sciences 7 (2012) 2099–2110.

[2] P. Bose and F. Hurtado, Flips in planar graphs, Comput. Geom. 42 (2009) 60–80. https://doi.org/10.1016/j.comgeo.2008.04.001

[3] D.L. Boutin, Determining sets, resolving sets, and the exchange property, Graphs Combin. 25 (2009) 789–806. https://doi.org/10.1007/s00373-010-0880-6

[4] G. Chartrand and L. Lesniak, Graphs and Digraphs, Fourth Ed. (Chapman & Hall/CRC, Boca Raton, 2005).

[5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).

[6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater (Eds.), Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998).

[7] M.A. Henning, C. Löwenstein and D. Rautenbach, Remarks about disjoint dominating sets, Discrete Math. 309 (2009) 6451–6458. https://doi.org/10.1016/j.disc.2009.06.017

[8] M.M. Kanté, V. Limouzy, A. Mary and L. Nourine, On the enumeration of minimal dominating sets and related notions, SIAM J. Discrete Math. 28 (2014) 1916–1929. https://doi.org/10.1137/120862612

[9] J. Martí-Farré, M. Mora and J.L. Ruiz, Uniform clutters and dominating sets of graphs, Discrete Appl. Math. 263 (2019) 220–233. https://doi.org/10.1016/j.dam.2018.03.028

[10] J.G. Oxley, Matroid Theory, Second Ed. (Oxford Graduate Text in Mathematics, Oxford University Press, New York, 2011).

[11] D.J.A. Welsh, Matroid Theory (Academic Press, London, 1976).

[12] D.B. West, Introduction to Graph Theory, Second Ed. (Prentice Hall, Upper Saddle River, 2001).