@article{DMGT_2023_43_1_a5,
author = {Burcroff, Amanda},
title = {Domination parameters of the unitary {Cayley} graph of $\mathbb{Z} // n\mathbb{Z}$},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {95--114},
year = {2023},
volume = {43},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a5/}
}
Burcroff, Amanda. Domination parameters of the unitary Cayley graph of $\mathbb{Z} // n\mathbb{Z}$. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 1, pp. 95-114. http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a5/
[1] R.B. Allan and R. Laskar, On domination and some related topics in graph theory, in: Proceedings of the Ninth Southeast Conference on Combinatorics, Graph Theory, and Computing, Util. Math. (1978) 43–56.
[2] R. Akhtar, M. Boggess, T. Jackson-Henderson, I. Jiménez, R. Karpman, A. Kinzel and D. Pritikin, On the unitary Cayley graph of a finite ring, Electron. J. Combin. 16 (2009) #R117. https://doi.org/10.37236/206
[3] R. Akhtar, A.B. Evans and D. Pritikin, Representation numbers of complete multipartite graphs, Discrete Math. 312 (2012) 1158–1165. https://doi.org/10.1016/j.disc.2011.12.003
[4] N. Alon and C. Defant, Isoperimetry, stability, and irredundance in direct products, Discrete Math. 343 (2020) 111902. https://doi.org/10.1016/j.disc.2020.111902
[5] N. Biggs, Algebraic Graph Theory, Second Edition (Cambridge University Press, Cambridge, 1993). https://doi.org/10.1017/CBO9780511608704
[6] B. Bollobás and E.J. Cockayne, Graph-theoretic parameters concerning domination, independence, and irredundance, J. Graph Theory 3 (1979) 241–249. https://doi.org/10.1002/jgt.3190030306
[7] B. Brešar, S. Klavžar and D.F. Rall, Dominating direct products of graphs, Discrete Math. 307 (2007) 1636–1642. https://doi.org/10.1016/j.disc.2006.09.013
[8] K. Budadoddi and A. Mallikarjuna Reddy, Cycle dominating sets of Euler totient Cayley graphs, Math. Sci. Int. Res. J. 3 (2014) 727–730.
[9] G.A. Cheston and G.H. Fricke, Classes of graphs for which the upper fractional domination equals independence, upper domination, and upper irredundance, Discrete Appl. Math. 55 (1994) 241–258. https://doi.org/10.1016/0166-218X(94)90011-6
[10] C. Defant, Unitary Cayley graphs of Dedekind domain quotients, AKCE Int. J. Graphs Comb. 13 (2016) 65–75. https://doi.org/10.1016/j.akcej.2016.03.001
[11] C. Defant and S. Iyer, Domination and upper domination of direct product graphs, Discrete Math. 341 (2018) 2742–2752. https://doi.org/10.1016/j.disc.2018.06.031
[12] P. Erdős and A.B. Evans, Representations of graphs and orthogonal Latin square graphs, J. Graph Theory 13 (1989) 593–595. https://doi.org/10.1002/jgt.3190130509
[13] A.B. Evans, Representations of disjoint unions of complete graphs, Discrete Math. 307 (2007) 1191–1198. https://doi.org/10.1016/j.disc.2006.07.029
[14] A.B. Evans, G. Isaak and D.A. Narayan, Representations of graphs modulo n, Discrete Math. 223 (2000) 109–123. https://doi.org/10.1016/S0012-365X(00)00062-5
[15] J.A. Gallian, Graph labeling, A dynamic survey, Electron. J. Combin. (2018) #DS6. https://doi.org/10.37236/27
[16] E.N. Gilbert, A comparison of signalling alphabets, The Bell System Technical Journal 31 (1952) 504–522. https://doi.org/10.1002/j.1538-7305.1952.tb01393.x
[17] C. Godsil and G. Royle, Algebraic Graph Theory, in: Grad. Texts in Math. 207 (Springer-Verlag, New York, 2001). https://doi.org/10.1007/978-1-4613-0163-9
[18] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc, New York, 1998). https://doi.org/10.1201/9781482246582
[19] W. Klotz and T. Sander, Some properties of unitary Cayley graphs, Electron. J. Combin. 14 (2007) #R45. https://doi.org/10.37236/963
[20] S.U. Maheswari and B. Maheswari, Independent domination number of Euler totient Cayley graphs and arithmetic graphs, Int. J. Adv. Res. Eng. Technol. 7(3) (2016) 56–65.
[21] M. Manjuri and B. Maheswari, Strong dominating sets of some arithmetic graphs, Int. J. Comput. Appl. 83(3) (2013) 36–40. https://doi.org/10.5120/14431-2577
[22] G. Mekiš, Lower bounds for the domination number and the total domination number of direct product graphs, Discrete Math. 310 (2010) 3310–3317. https://doi.org/10.1016/j.disc.2010.07.015
[23] M. Valencia-Pabon, Idiomatic partitions of direct products of complete graphs, Discrete Math. 310 (2010) 1118–1122. https://doi.org/10.1016/j.disc.2009.10.012
[24] R.R. Varshamov, Estimate of the number of signals in error correcting codes, Dokl. Akad. Nauk 117 (1957) 739–741.
[25] H.J. Veldman, Existence of dominating cycles and paths, Discrete Math. 43 (1983) 281–296. https://doi.org/10.1016/0012-365X(83)90165-6
[26] H. Vemuri, Domination in direct products of complete graphs, Discrete Appl. Math. 285 (2020) 473–482. https://doi.org/10.1016/j.dam.2020.06.015