Burnside chromatic polynomials of group-invariant graphs
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 1, pp. 55-76 Cet article a éte moissonné depuis la source Library of Science

Voir la notice de l'article

We introduce the Burnside chromatic polynomial of a graph that is invariant under a group action. This is a generalization of the Q-chromatic function Zaslavsky introduced for gain graphs. Given a group 𝔊 acting on a graph G and a 𝔊-set X, a proper X-coloring is a function with no monochromatic edge orbit. The set of proper colorings is a 𝔊-set which induces a polynomial function from the Burnside ring of 𝔊 to itself. In this paper, we study many properties of the Burnside chromatic polynomial, answering some questions of Zaslavsky.
Keywords: chromatic polynomial, Burnside ring, gain graph, polynomial function
@article{DMGT_2023_43_1_a3,
     author = {White, Jacob A.},
     title = {Burnside chromatic polynomials of group-invariant graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {55--76},
     year = {2023},
     volume = {43},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a3/}
}
TY  - JOUR
AU  - White, Jacob A.
TI  - Burnside chromatic polynomials of group-invariant graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2023
SP  - 55
EP  - 76
VL  - 43
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a3/
LA  - en
ID  - DMGT_2023_43_1_a3
ER  - 
%0 Journal Article
%A White, Jacob A.
%T Burnside chromatic polynomials of group-invariant graphs
%J Discussiones Mathematicae. Graph Theory
%D 2023
%P 55-76
%V 43
%N 1
%U http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a3/
%G en
%F DMGT_2023_43_1_a3
White, Jacob A. Burnside chromatic polynomials of group-invariant graphs. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 1, pp. 55-76. http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a3/

[1] N. Biggs, Algebraic Graph Theory (Cambridge Tracts in Mathematics, Cambridge University Press, London, 1974). https://doi.org/10.1017/CBO9780511608704

[2] G.S. Bowlin, Maximum frustration in bipartite signed graphs, Electron. J. Combin. 19 (2012) #P10. https://doi.org/10.37236/2204

[3] J.L. Gross, Voltage graphs, Discrete Math. 9 (1974) 239–246. https://doi.org/10.1016/0012-365X(74)90006-5

[4] J.L. Gross and T.W. Tucker, Topological Graph Theory (John Wiley & Sons, Inc., New York, 1987).

[5] F. Harary, On the notion of balance of a signed graph, Michigan Math. J. 2 (1953) 143–146. https://doi.org/10.1307/mmj/1028989917

[6] G.-C. Rota, On the foundations of combinatorial theory: I}. Theory of Möbius functions, Z. Wahrscheinlichkeitsteorie verw Gebiete 2 (1964) 340–368. https://doi.org/10.1007/BF00531932

[7] L. Solomon, The Burnside algebra of a finite group, J. Combin. Theory 2 (1967) 603–615. https://doi.org/10.1016/S0021-9800(67)80064-4

[8] R.P. Stanley, Enumerative Combinatorics, Vol. 1, in: Wadsworth & Brooks/Cole, Math. Ser. (Springer, Boston, 1986). https://doi.org/10.1007/978-1-4615-9763-6

[9] R.P. Stanley, Acyclic orientations of graphs, Discrete Math. 5 (1973) 171–178. https://doi.org/10.1016/0012-365X(73)90108-8

[10] H. Whitney, A logical expansion in mathematics, Bull. Amer. Math. Soc. 38 (1932) 572–579. https://doi.org/10.1090/S0002-9904-1932-05460-X

[11] T. Zaslavsky, Totally frustrated states in the chromatic theory of gain graphs, European J. Combin. 30 (2009) 133–156. https://doi.org/10.1016/j.ejc.2008.02.004