Burnside chromatic polynomials of group-invariant graphs
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 1, pp. 55-76

Voir la notice de l'article provenant de la source Library of Science

We introduce the Burnside chromatic polynomial of a graph that is invariant under a group action. This is a generalization of the Q-chromatic function Zaslavsky introduced for gain graphs. Given a group 𝔊 acting on a graph G and a 𝔊-set X, a proper X-coloring is a function with no monochromatic edge orbit. The set of proper colorings is a 𝔊-set which induces a polynomial function from the Burnside ring of 𝔊 to itself. In this paper, we study many properties of the Burnside chromatic polynomial, answering some questions of Zaslavsky.
Keywords: chromatic polynomial, Burnside ring, gain graph, polynomial function
@article{DMGT_2023_43_1_a3,
     author = {White, Jacob A.},
     title = {Burnside chromatic polynomials of group-invariant graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {55--76},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a3/}
}
TY  - JOUR
AU  - White, Jacob A.
TI  - Burnside chromatic polynomials of group-invariant graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2023
SP  - 55
EP  - 76
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a3/
LA  - en
ID  - DMGT_2023_43_1_a3
ER  - 
%0 Journal Article
%A White, Jacob A.
%T Burnside chromatic polynomials of group-invariant graphs
%J Discussiones Mathematicae. Graph Theory
%D 2023
%P 55-76
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a3/
%G en
%F DMGT_2023_43_1_a3
White, Jacob A. Burnside chromatic polynomials of group-invariant graphs. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 1, pp. 55-76. http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a3/