Unique minimum semipaired dominating sets in trees
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 1, pp. 35-53
Voir la notice de l'article provenant de la source Library of Science
Let G be a graph with vertex set V. A subset S ⊆ V is a semipaired dominating set of G if every vertex in V ∖ S is adjacent to a vertex in S and S can be partitioned into two element subsets such that the vertices in each subset are at most distance two apart. The semipaired domination number is the minimum cardinality of a semipaired dominating set of G. We characterize the trees having a unique minimum semipaired dominating set. We also determine an upper bound on the semipaired domination number of these trees and characterize the trees attaining this bound.
Keywords:
paired-domination, semipaired domination number
@article{DMGT_2023_43_1_a2,
author = {Haynes, Teresa W. and Henning, Michael A.},
title = {Unique minimum semipaired dominating sets in trees},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {35--53},
publisher = {mathdoc},
volume = {43},
number = {1},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a2/}
}
TY - JOUR AU - Haynes, Teresa W. AU - Henning, Michael A. TI - Unique minimum semipaired dominating sets in trees JO - Discussiones Mathematicae. Graph Theory PY - 2023 SP - 35 EP - 53 VL - 43 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a2/ LA - en ID - DMGT_2023_43_1_a2 ER -
Haynes, Teresa W.; Henning, Michael A. Unique minimum semipaired dominating sets in trees. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 1, pp. 35-53. http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a2/