Unique minimum semipaired dominating sets in trees
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 1, pp. 35-53

Voir la notice de l'article provenant de la source Library of Science

Let G be a graph with vertex set V. A subset S ⊆ V is a semipaired dominating set of G if every vertex in V ∖ S is adjacent to a vertex in S and S can be partitioned into two element subsets such that the vertices in each subset are at most distance two apart. The semipaired domination number is the minimum cardinality of a semipaired dominating set of G. We characterize the trees having a unique minimum semipaired dominating set. We also determine an upper bound on the semipaired domination number of these trees and characterize the trees attaining this bound.
Keywords: paired-domination, semipaired domination number
@article{DMGT_2023_43_1_a2,
     author = {Haynes, Teresa W. and Henning, Michael A.},
     title = {Unique minimum semipaired dominating sets in trees},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {35--53},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a2/}
}
TY  - JOUR
AU  - Haynes, Teresa W.
AU  - Henning, Michael A.
TI  - Unique minimum semipaired dominating sets in trees
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2023
SP  - 35
EP  - 53
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a2/
LA  - en
ID  - DMGT_2023_43_1_a2
ER  - 
%0 Journal Article
%A Haynes, Teresa W.
%A Henning, Michael A.
%T Unique minimum semipaired dominating sets in trees
%J Discussiones Mathematicae. Graph Theory
%D 2023
%P 35-53
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a2/
%G en
%F DMGT_2023_43_1_a2
Haynes, Teresa W.; Henning, Michael A. Unique minimum semipaired dominating sets in trees. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 1, pp. 35-53. http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a2/