Relaxed DP-coloring and another generalization of DP-coloring on planar graphs without $4$-cycles and $7$-cycles
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 1, pp. 287-297 Cet article a éte moissonné depuis la source Library of Science

Voir la notice de l'article

DP-coloring is generalized via relaxed coloring and variable degeneracy in [P. Sittitrai and K. Nakprasit, Sufficient conditions on planar graphs to have a relaxed DP-3-coloring, Graphs Combin. 35 (2019) 837–845], [K.M. Nakprasit and K. Nakprasit, A generalization of some results on list coloring and DP-coloring, Graphs Combin. 36 (2020) 1189–1201] and [P. Sittitrai and K. Nakprasit, An analogue of DP-coloring for variable degeneracy and its applications, Discuss. Math. Graph Theory]. In this work, we introduce another concept that includes two previous generalizations. We demonstrate its application on planar graphs without 4-cycles and 7-cycles. One implication is that the vertex set of every planar graph without 4-cycles and 7-cycles can be partitioned into three sets in which each of them induces a linear forest and one of them is an independent set. Additionally, we show that every planar graph without 4-cycles and 7-cycles is DP-(1,1,1)-colorable. This generalizes a result of Lih et al. [A note on list improper coloring planar graphs, Appl. Math. Lett. 14 (2001) 269–273] that every planar graph without 4-cycles and 7-cycles is (3,1)^∗-choosable.
Keywords: relaxed DP-colorings, variable degeneracy, planar graphs, discharging
@article{DMGT_2023_43_1_a18,
     author = {Sribunhung, Sarawute and Nakprasit, Keaitsuda Maneeruk and Nakprasit, Kittikorn and Sittitrai, Pongpat},
     title = {Relaxed {DP-coloring} and another generalization of {DP-coloring} on planar graphs without $4$-cycles and $7$-cycles},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {287--297},
     year = {2023},
     volume = {43},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a18/}
}
TY  - JOUR
AU  - Sribunhung, Sarawute
AU  - Nakprasit, Keaitsuda Maneeruk
AU  - Nakprasit, Kittikorn
AU  - Sittitrai, Pongpat
TI  - Relaxed DP-coloring and another generalization of DP-coloring on planar graphs without $4$-cycles and $7$-cycles
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2023
SP  - 287
EP  - 297
VL  - 43
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a18/
LA  - en
ID  - DMGT_2023_43_1_a18
ER  - 
%0 Journal Article
%A Sribunhung, Sarawute
%A Nakprasit, Keaitsuda Maneeruk
%A Nakprasit, Kittikorn
%A Sittitrai, Pongpat
%T Relaxed DP-coloring and another generalization of DP-coloring on planar graphs without $4$-cycles and $7$-cycles
%J Discussiones Mathematicae. Graph Theory
%D 2023
%P 287-297
%V 43
%N 1
%U http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a18/
%G en
%F DMGT_2023_43_1_a18
Sribunhung, Sarawute; Nakprasit, Keaitsuda Maneeruk; Nakprasit, Kittikorn; Sittitrai, Pongpat. Relaxed DP-coloring and another generalization of DP-coloring on planar graphs without $4$-cycles and $7$-cycles. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 1, pp. 287-297. http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a18/

[1] A.Yu. Bernshteyn, A.V. Kostochka and S.P. Pron, On DP-coloring of graphs and multigraphs, Sib. Math. J. 58 (2017) 28–36. https://doi.org/10.1134/S0037446617010049

[2] O.V. Borodin, A.V. Kostochka and B. Toft, Variable degeneracy: extensions of Brooks and Gallai's theorems, Discrete Math. 214 (2000) 101–112. https://doi.org/10.1016/S0012-365X(99)00221-6

[3] Z. Dvořák and L. Postle, Correspondence coloring and its application to list-coloring planar graphs without cycles of lengths 4 to 8, J. Combin. Theory Ser. B. 129 (2018) 38–54. https://doi.org/10.1016/j.jctb.2017.09.001

[4] N. Eaton and T. Hull, Defective list colorings of planar graphs, Bull. Inst. Combin. Appl. 25 (1999) 79–88.

[5] P. Erdős, A.L. Rubin and H. Taylor, Choosability in graphs, Congr. Numer. 26 (1979) 125–159.

[6] K. Lih, Z. Song, W. Wang and K. Zhang, A note on list improper coloring planar graphs, Appl. Math. Lett. 14 (2001) 269–273. https://doi.org/10.1016/S0893-9659(00)00147-6

[7] K.M. Nakprasit and K. Nakprasit, A generalization of some results on list coloring and DP-coloring, Graphs Combin. 36 (2020) 1189–1201. https://doi.org/10.1007/s00373-020-02177-6

[8] P. Sittitrai and K. Nakprasit, An analogue of DP-coloring for variable degeneracy and its applications, Discuss. Math. Graph Theory, in press. https://doi.org/10.7151/dmgt.2238

[9] P. Sittitrai and K. Nakprasit, Sufficient conditions on planar graphs to have a relaxed DP-3-coloring, Graphs Combin. 35 (2019) 837–845. https://doi.org/10.1007/s00373-019-02038-x

[10] R. Škrekovski, List improper colourings of planar graphs, Combin. Probab. Comput. 8 (1999) 293–299. https://doi.org/10.1017/S0963548399003752

[11] V.G. Vizing, Vertex colorings with given colors, Metody Diskret. Analiz. 29 (1976) 3–10, in Russian.