@article{DMGT_2023_43_1_a18,
author = {Sribunhung, Sarawute and Nakprasit, Keaitsuda Maneeruk and Nakprasit, Kittikorn and Sittitrai, Pongpat},
title = {Relaxed {DP-coloring} and another generalization of {DP-coloring} on planar graphs without $4$-cycles and $7$-cycles},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {287--297},
year = {2023},
volume = {43},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a18/}
}
TY - JOUR AU - Sribunhung, Sarawute AU - Nakprasit, Keaitsuda Maneeruk AU - Nakprasit, Kittikorn AU - Sittitrai, Pongpat TI - Relaxed DP-coloring and another generalization of DP-coloring on planar graphs without $4$-cycles and $7$-cycles JO - Discussiones Mathematicae. Graph Theory PY - 2023 SP - 287 EP - 297 VL - 43 IS - 1 UR - http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a18/ LA - en ID - DMGT_2023_43_1_a18 ER -
%0 Journal Article %A Sribunhung, Sarawute %A Nakprasit, Keaitsuda Maneeruk %A Nakprasit, Kittikorn %A Sittitrai, Pongpat %T Relaxed DP-coloring and another generalization of DP-coloring on planar graphs without $4$-cycles and $7$-cycles %J Discussiones Mathematicae. Graph Theory %D 2023 %P 287-297 %V 43 %N 1 %U http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a18/ %G en %F DMGT_2023_43_1_a18
Sribunhung, Sarawute; Nakprasit, Keaitsuda Maneeruk; Nakprasit, Kittikorn; Sittitrai, Pongpat. Relaxed DP-coloring and another generalization of DP-coloring on planar graphs without $4$-cycles and $7$-cycles. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 1, pp. 287-297. http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a18/
[1] A.Yu. Bernshteyn, A.V. Kostochka and S.P. Pron, On DP-coloring of graphs and multigraphs, Sib. Math. J. 58 (2017) 28–36. https://doi.org/10.1134/S0037446617010049
[2] O.V. Borodin, A.V. Kostochka and B. Toft, Variable degeneracy: extensions of Brooks and Gallai's theorems, Discrete Math. 214 (2000) 101–112. https://doi.org/10.1016/S0012-365X(99)00221-6
[3] Z. Dvořák and L. Postle, Correspondence coloring and its application to list-coloring planar graphs without cycles of lengths 4 to 8, J. Combin. Theory Ser. B. 129 (2018) 38–54. https://doi.org/10.1016/j.jctb.2017.09.001
[4] N. Eaton and T. Hull, Defective list colorings of planar graphs, Bull. Inst. Combin. Appl. 25 (1999) 79–88.
[5] P. Erdős, A.L. Rubin and H. Taylor, Choosability in graphs, Congr. Numer. 26 (1979) 125–159.
[6] K. Lih, Z. Song, W. Wang and K. Zhang, A note on list improper coloring planar graphs, Appl. Math. Lett. 14 (2001) 269–273. https://doi.org/10.1016/S0893-9659(00)00147-6
[7] K.M. Nakprasit and K. Nakprasit, A generalization of some results on list coloring and DP-coloring, Graphs Combin. 36 (2020) 1189–1201. https://doi.org/10.1007/s00373-020-02177-6
[8] P. Sittitrai and K. Nakprasit, An analogue of DP-coloring for variable degeneracy and its applications, Discuss. Math. Graph Theory, in press. https://doi.org/10.7151/dmgt.2238
[9] P. Sittitrai and K. Nakprasit, Sufficient conditions on planar graphs to have a relaxed DP-3-coloring, Graphs Combin. 35 (2019) 837–845. https://doi.org/10.1007/s00373-019-02038-x
[10] R. Škrekovski, List improper colourings of planar graphs, Combin. Probab. Comput. 8 (1999) 293–299. https://doi.org/10.1017/S0963548399003752
[11] V.G. Vizing, Vertex colorings with given colors, Metody Diskret. Analiz. 29 (1976) 3–10, in Russian.