The Hilton-Spencer cycle theorems via Katona's shadow intersection theorem
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 1, pp. 277-286

Voir la notice de l'article provenant de la source Library of Science

A family 𝒜 of sets is said to be intersecting if every two sets in 𝒜 intersect. An intersecting family is said to be trivial if its sets have a common element. A graph G is said to be r-EKR if at least one of the largest intersecting families of independent r-element sets of G is trivial. Let α(G) and ω(G) denote the independence number and the clique number of G, respectively. Hilton and Spencer recently showed that if G is the vertex-disjoint union of a cycle C raised to the power k and s cycles _1 C , . . . , _s C raised to the powers k_1, . . . , k_s, respectively, 1 ≤ r ≤α(G), and min(ω(_1C^k_1), …, ω(_sC^k_s)) ≥ω(C^k), then G is r-EKR. They had shown that the same holds if C is replaced by a path P and the condition on the clique numbers is relaxed to min(ω(_1C^k_1), …, ω(_sC^k_s)) ≥ω(P^k). We use the classical Shadow Intersection Theorem of Katona to obtain a significantly shorter proof of each result for the case where the inequality for the minimum clique number is strict.
Keywords: cycle, independent set, intersecting family, Erd\H{o}s-Ko-Rado theorem, Hilton-Spencer theorem, Katona's shadow intersection theorem
@article{DMGT_2023_43_1_a17,
     author = {Borg, Peter and Feghali, Carl},
     title = {The {Hilton-Spencer} cycle theorems via {Katona's} shadow intersection theorem},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {277--286},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a17/}
}
TY  - JOUR
AU  - Borg, Peter
AU  - Feghali, Carl
TI  - The Hilton-Spencer cycle theorems via Katona's shadow intersection theorem
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2023
SP  - 277
EP  - 286
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a17/
LA  - en
ID  - DMGT_2023_43_1_a17
ER  - 
%0 Journal Article
%A Borg, Peter
%A Feghali, Carl
%T The Hilton-Spencer cycle theorems via Katona's shadow intersection theorem
%J Discussiones Mathematicae. Graph Theory
%D 2023
%P 277-286
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a17/
%G en
%F DMGT_2023_43_1_a17
Borg, Peter; Feghali, Carl. The Hilton-Spencer cycle theorems via Katona's shadow intersection theorem. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 1, pp. 277-286. http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a17/