@article{DMGT_2023_43_1_a17,
author = {Borg, Peter and Feghali, Carl},
title = {The {Hilton-Spencer} cycle theorems via {Katona's} shadow intersection theorem},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {277--286},
year = {2023},
volume = {43},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a17/}
}
TY - JOUR AU - Borg, Peter AU - Feghali, Carl TI - The Hilton-Spencer cycle theorems via Katona's shadow intersection theorem JO - Discussiones Mathematicae. Graph Theory PY - 2023 SP - 277 EP - 286 VL - 43 IS - 1 UR - http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a17/ LA - en ID - DMGT_2023_43_1_a17 ER -
Borg, Peter; Feghali, Carl. The Hilton-Spencer cycle theorems via Katona's shadow intersection theorem. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 1, pp. 277-286. http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a17/
[1] R. Ahlswede and L.H. Khachatrian, The complete intersection theorem for systems of finite sets, European J. Combin. 18 (1997) 125–136. https://doi.org/10.1006/eujc.1995.0092
[2] P. Borg, Extremal t-intersecting sub-families of hereditary families, J. Lond. Math. Soc. 79 (2009) 167–185. https://doi.org/10.1112/jlms/jdn062
[3] P. Borg, Intersecting families, cross-intersecting families, and a proof of a conjecture of Feghali, Johnson and Thomas, Discrete Math. 341 (2018) 1331–1335. https://doi.org/10.1016/j.disc.2018.02.004
[4] P. Borg, Intersecting families of sets and permutations: a survey, Int. J. Math. Game Theory Algebra 21 (2012) 543–559.
[5] P. Borg, On t-intersecting families of signed sets and permutations, Discrete Math. 309 (2009) 3310–3317. https://doi.org/10.1016/j.disc.2008.09.039
[6] P. Borg, The maximum product of sizes of cross-intersecting families, Discrete Math. 340 (2017) 2307–2317. https://doi.org/10.1016/j.disc.2017.04.019
[7] P. Borg and F. Holroyd, The Erdős-Ko-Rado properties of set systems defined by double partitions, Discrete Math. 309 (2009) 4754–4761. https://doi.org/10.1016/j.disc.2008.05.052
[8] P. Borg and F. Holroyd, The Erdős-Ko-Rado property of various graphs containing singletons, Discrete Math. 309 (2009) 2877–2885. https://doi.org/10.1016/j.disc.2008.07.021
[9] D.E. Daykin, Erdős-Ko-Rado from Kruskal-Katona, J. Combin. Theory Ser. A 17 (1974) 254–255. https://doi.org/10.1016/0097-3165(74)90013-2
[10] M. Deza and P. Frankl, The Erdős-Ko-Rado theorem–-22 years later, SIAM J. Algebraic Discrete Methods 4 (1983) 419–431. https://doi.org/10.1137/0604042
[11] P. Erdős, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Q. J. Math. 12 (1961) 313–320. https://doi.org/10.1093/qmath/12.1.313
[12] C. Feghali, M. Johnson and D. Thomas, Erdős-Ko-Rado theorems for a family of trees, Discrete Appl. Math. 236 (2018) 464–471. https://doi.org/10.1016/j.dam.2017.10.009
[13] P. Frankl, Extremal set systems, in: Handbook of Combinatorics, 2, R.L. Graham, M. Grötschel and L. Lovász (Ed(s)), (Elsevier, Amsterdam 1995) 1293–1329.
[14] P. Frankl, The Erdős-Ko-Rado Theorem is true for n=ckt, in: Proc. Fifth Hung. Comb. Coll., (North-Holland, Amsterdam 1978) 365–375.
[15] P. Frankl, The shifting technique in extremal set theory, in: Surveys in Combinatorics, C. Whitehead (Ed(s)), (Cambridge Univ. Press, London/New York 1987) 81–110.
[16] P. Frankl and Z. Füredi, A new short proof of the EKR theorem, J. Combin. Theory Ser. A 119 (2012) 1388–1390. https://doi.org/10.1016/j.jcta.2012.03.012
[17] P. Frankl and N. Tokushige, Invitation to intersection problems for finite sets, J. Combin. Theory Ser. A 144 (2016) 157–211. https://doi.org/10.1016/j.jcta.2016.06.017
[18] A.J.W. Hilton, F.C. Holroyd and C.L. Spencer, King Arthur and his knights with two round tables, Q. J. Math. 62 (2011) 625–635. https://doi.org/10.1093/qmath/haq005
[19] A.J.W. Hilton and C.L. Spencer, A graph-theoretical generalisation of Berge's analogue of the Erdős-Ko-Rado theorem, in: Trends in Graph Theory, (Birkhauser Verlag, Basel, Switzerland 2006) 225–242.
[20] A.J.W. Hilton and C.L. Spencer, A generalization of Talbot's theorem about King Arthur and his knights of the round table, J. Combin. Theory Ser. A 116 (2009) 1023–1033. https://doi.org/10.1016/j.jcta.2009.02.001
[21] F. Holroyd, C. Spencer and J. Talbot, Compression and Erdős-Ko-Rado graphs, Discrete Math. 293 (2005) 155–164. https://doi.org/10.1016/j.disc.2004.08.041
[22] F. Holroyd and J. Talbot, Graphs with the Erdős-Ko-Rado property, Discrete Math. 293 (2005) 165–176. https://doi.org/10.1016/j.disc.2004.08.028
[23] G. Hurlbert and V. Kamat, Erdős-Ko-Rado theorems for chordal graphs and trees, J. Combin. Theory Ser. A 118 (2011) 829–841. https://doi.org/10.1016/j.jcta.2010.11.017
[24] G. Hurlbert and V. Kamat, New injective proofs of the Erdős-Ko-Rado and Hilton-Milner theorems, Discrete Math. 341 (2018) 1749–1754. https://doi.org/10.1016/j.disc.2018.03.010
[25] G.O.H. Katona, A simple proof of the Erdős-Chao Ko-Rado theorem, J. Combin. Theory Ser. B 13 (1972) 183–184. https://doi.org/10.1016/0095-8956(72)90054-8
[26] G.O.H. Katona, A theorem of finite sets, in: Theory of Graphs, Proc. Colloq., (Tihany, Akadémiai Kiadó 1968) 187–207.
[27] G.O.H. Katona, Intersection theorems for systems of finite sets, Acta Math. Acad. Sci. Hungar. 15 (1964) 329–337. https://doi.org/10.1007/BF01897141
[28] J.B. Kruskal, The number of simplices in a complex, in: Mathematical Optimization Techniques, (University of California Press, Berkeley, California 1963) 251–278.
[29] J. Talbot, Intersecting families of separated sets, J. London Math. Soc. 68 (2003) 37–51. https://doi.org/10.1112/S0024610703004356
[30] R.M. Wilson, The exact bound in the Erdős-Ko-Rado theorem, Combinatorica 4 (1984) 247–257. https://doi.org/10.1007/BF02579226
[31] R. Woodroofe, Erdős-Ko-Rado theorems for simplicial complexes, J. Combin. Theory Ser. A 118 (2011) 1218–1227. https://doi.org/10.1016/j.jcta.2010.11.022