Some results on path-factor critical avoidable graphs
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 1, pp. 233-244

Voir la notice de l'article provenant de la source Library of Science

A path factor is a spanning subgraph F of G such that every component of F is a path with at least two vertices. We write P_≥ k={P_i:i≥ k}. Then a P_≥ k-factor of G means a path factor in which every component admits at least k vertices, where k≥2 is an integer. A graph G is called a P_≥ k-factor avoidable graph if for any e∈ E(G), G admits a P_≥ k-factor excluding e. A graph G is called a (P_≥ k,n)-factor critical avoidable graph if for any Q⊆ V(G) with |Q|=n, G-Q is a P_≥ k-factor avoidable graph. Let G be an (n+2)-connected graph. In this paper, we demonstrate that (i) G is a (P_≥2,n)-factor critical avoidable graph if tough(G) gt; n+24; (ii) G is a (P_≥3,n)-factor critical avoidable graph if tough(G) gt;n+12; (iii) G is a (P_≥2,n)-factor critical avoidable graph if I(G) gt;n+23; (iv) G is a (P_≥3,n)-factor critical avoidable graph if I(G) gt;n+32. Furthermore, we claim that these conditions are sharp.
Keywords: graph, toughness, isolated toughness, $P_{\geq k}$-factor, $(P_{\geq k},n)$-factor critical avoidable graph
@article{DMGT_2023_43_1_a15,
     author = {Zhou, Sizhong},
     title = {Some results on path-factor critical avoidable graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {233--244},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a15/}
}
TY  - JOUR
AU  - Zhou, Sizhong
TI  - Some results on path-factor critical avoidable graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2023
SP  - 233
EP  - 244
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a15/
LA  - en
ID  - DMGT_2023_43_1_a15
ER  - 
%0 Journal Article
%A Zhou, Sizhong
%T Some results on path-factor critical avoidable graphs
%J Discussiones Mathematicae. Graph Theory
%D 2023
%P 233-244
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a15/
%G en
%F DMGT_2023_43_1_a15
Zhou, Sizhong. Some results on path-factor critical avoidable graphs. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 1, pp. 233-244. http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a15/