Extending Potočnik and Šajna's conditions on the existence of vertex-transitive self-complementary $k$-hypergraphs
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 1, pp. 225-231 Cet article a éte moissonné depuis la source Library of Science

Voir la notice de l'article

Let 𝓁 be a positive integer, k=2^𝓁 or k=2^𝓁+1, and let n be a positive integer with n ≡ 1 (mod 2^𝓁+1). For a prime p, n_(p) denotes the largest integer i such that p^i divides n. Potočnik and Šajna showed that if there exists a vertex-transitive self-complementary k-hypergraph of order n, then for every prime p we have p^n_(p)≡ 1 ( 2^𝓁+1 ). Here we extend their result to a larger class of integers k.
Keywords: vertex-transitive $k$-hypergraphs, self-complementary hypergraphs
@article{DMGT_2023_43_1_a14,
     author = {Lesniak, Linda and Thuiller, Henri and Wojda, Adam Pawe{\l}},
     title = {Extending {Poto\v{c}nik} and {\v{S}ajna's} conditions on the existence of vertex-transitive self-complementary $k$-hypergraphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {225--231},
     year = {2023},
     volume = {43},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a14/}
}
TY  - JOUR
AU  - Lesniak, Linda
AU  - Thuiller, Henri
AU  - Wojda, Adam Paweł
TI  - Extending Potočnik and Šajna's conditions on the existence of vertex-transitive self-complementary $k$-hypergraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2023
SP  - 225
EP  - 231
VL  - 43
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a14/
LA  - en
ID  - DMGT_2023_43_1_a14
ER  - 
%0 Journal Article
%A Lesniak, Linda
%A Thuiller, Henri
%A Wojda, Adam Paweł
%T Extending Potočnik and Šajna's conditions on the existence of vertex-transitive self-complementary $k$-hypergraphs
%J Discussiones Mathematicae. Graph Theory
%D 2023
%P 225-231
%V 43
%N 1
%U http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a14/
%G en
%F DMGT_2023_43_1_a14
Lesniak, Linda; Thuiller, Henri; Wojda, Adam Paweł. Extending Potočnik and Šajna's conditions on the existence of vertex-transitive self-complementary $k$-hypergraphs. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 1, pp. 225-231. http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a14/

[1] R.A. Beezer, Sylow subgraphs in self-complementary vertex transitive graphs, Expo. Math. 24 (2006) 185–194. https://doi.org/10.1016/j.exmath.2005.09.003

[2] M. Muzychuk, On Sylow subgraphs of vertex-transitive self-complementary graphs, Bull. Lond. Math. Soc. 31 (1999) 531–533. https://doi.org/10.1112/S0024609399005925

[3] S. Gosselin, Vertex-transitive self-complementary uniform hypergraphs of prime order, Discrete Math. 310 (2010) 671–680. https://doi.org/10.1016/j.disc.2009.08.011

[4] W.K. Nicholson, Introduction to Abstract Algebra (Wiley-Interscience, 2007).

[5] P. Potočnik and M. Šajna, Vetrex-transitive self-complementary uniform hypergraphs, European J. Combin. 28 (2009) 327–337. https://doi.org/10.1016/j.ejc.2007.08.003

[6] S.B. Rao, On regular and strongly-regular self-complementary graphs, Discrete Math. 54 (1985) 73–82. https://doi.org/10.1016/0012-365X(85)90063-9

[7] A. Szymański and A.P. Wojda, Self-complementing permutations of k-uniform hypergraphs, Discrete Math. Theor. Comput. Sci. 11 (2009) 117–124.