On the sizes of $(k,l)$-edge-maximal $r$-uniform hypergraphs
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 1, pp. 179-194 Cet article a éte moissonné depuis la source Library of Science

Voir la notice de l'article

Let H=(V,E) be a hypergraph, where V is a set of vertices and E is a set of non-empty subsets of V called edges. If all edges of H have the same cardinality r, then H is an r-uniform hypergraph; if E consists of all r-subsets of V, then H is a complete r-uniform hypergraph, denoted by K_n^r, where n=|V|. An r-uniform hypergraph H=(V,E) is (k,l)-edge-maximal if every subhypergraph H^' of H with |V(H^')|≥ l has edge-connectivity at most k, but for any edge e∈ E(K_n^r)∖ E(H), H+e contains at least one subhypergraph H^” with |V(H^”)|≥ l and edge-connectivity at least k+1. In this paper, we obtain the lower bounds and the upper bounds of the sizes of (k,l)-edge-maximal hypergraphs. Furthermore, we show that these bounds are best possible.
Keywords: edge-connectivity, $(k,l)$-edge-maximal hypergraphs, $r$-uniform hypergraphs
@article{DMGT_2023_43_1_a11,
     author = {Tian, Yingzhi and Lai, Hong-Jian and Meng, Jixiang and Xu, Murong},
     title = {On the sizes of $(k,l)$-edge-maximal $r$-uniform hypergraphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {179--194},
     year = {2023},
     volume = {43},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a11/}
}
TY  - JOUR
AU  - Tian, Yingzhi
AU  - Lai, Hong-Jian
AU  - Meng, Jixiang
AU  - Xu, Murong
TI  - On the sizes of $(k,l)$-edge-maximal $r$-uniform hypergraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2023
SP  - 179
EP  - 194
VL  - 43
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a11/
LA  - en
ID  - DMGT_2023_43_1_a11
ER  - 
%0 Journal Article
%A Tian, Yingzhi
%A Lai, Hong-Jian
%A Meng, Jixiang
%A Xu, Murong
%T On the sizes of $(k,l)$-edge-maximal $r$-uniform hypergraphs
%J Discussiones Mathematicae. Graph Theory
%D 2023
%P 179-194
%V 43
%N 1
%U http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a11/
%G en
%F DMGT_2023_43_1_a11
Tian, Yingzhi; Lai, Hong-Jian; Meng, Jixiang; Xu, Murong. On the sizes of $(k,l)$-edge-maximal $r$-uniform hypergraphs. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 1, pp. 179-194. http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a11/

[1] M.A. Bahmanian and M. Šajna, Connection and separation in hypergraphs, Theory Appl. Graphs 2 (2015) Article 5. https://doi.org/10.20429/tag.2015.020205

[2] F.T. Boesch and J.A.M. McHuge, An edge extremal result for subcohesion, J. Combin. Theory Ser. B 38 (1985) 1–7. https://doi.org/10.1016/0095-8956(85)90087-5

[3] J.A. Bondy and U.S.R. Murty, Graph Theory, Grad. Texts in Math. 244 (Springer, Berlin, 2008).

[4] M. Dewar, D. Pike and J. Proos, Connectivity in hypergraphs, Canad. Math. Bull. 61 (2018) 252–271. https://doi.org/10.4153/CMB-2018-005-9

[5] H.-J. Lai, The size of strength-maximal graphs, J. Graph Theory 14 (1990) 187–197. https://doi.org/10.1002/jgt.3190140207

[6] H.-J. Lai and C.-Z. Zhang, Edge-maximal (k,i)-graphs, J. Graph Theory 18 (1994) 227–240. https://doi.org/10.1002/jgt.3190180303

[7] W. Mader, Minimale n-fach kantenzusammenhängende Graphen, Math. Ann. 191 (1971) 21–28. https://doi.org/10.1007/BF01433466

[8] D.W. Matula, k-components, clusters, and slicings in graphs, SIAM J. Appl. Math. 22 (1972) 459–480. https://doi.org/10.1137/0122040

[9] Y.Z. Tian, L.Q. Xu, H.-J. Lai and J.X. Meng, On the sizes of k-edge-maximal r-uniform hypergraphs (2018). arXiv: 1802.08843v3