A note on the upper bounds on the size of bipartite and tripartite 1-embeddable graphs on surfaces
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 1, pp. 171-177 Cet article a éte moissonné depuis la source Library of Science

Voir la notice de l'article

In this note, we show sharp upper bounds of the size of simple bipartite and tripartite 1-embeddable graphs on closed surfaces.
Keywords: $1$-embedding, bipartite graph, tripartite graph
@article{DMGT_2023_43_1_a10,
     author = {Shibuya, Hikari and Suzuki, Yusuke},
     title = {A note on the upper bounds on the size of bipartite and tripartite 1-embeddable graphs on surfaces},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {171--177},
     year = {2023},
     volume = {43},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a10/}
}
TY  - JOUR
AU  - Shibuya, Hikari
AU  - Suzuki, Yusuke
TI  - A note on the upper bounds on the size of bipartite and tripartite 1-embeddable graphs on surfaces
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2023
SP  - 171
EP  - 177
VL  - 43
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a10/
LA  - en
ID  - DMGT_2023_43_1_a10
ER  - 
%0 Journal Article
%A Shibuya, Hikari
%A Suzuki, Yusuke
%T A note on the upper bounds on the size of bipartite and tripartite 1-embeddable graphs on surfaces
%J Discussiones Mathematicae. Graph Theory
%D 2023
%P 171-177
%V 43
%N 1
%U http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a10/
%G en
%F DMGT_2023_43_1_a10
Shibuya, Hikari; Suzuki, Yusuke. A note on the upper bounds on the size of bipartite and tripartite 1-embeddable graphs on surfaces. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 1, pp. 171-177. http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a10/

[1] D.V. Karpov, An upper bound on the number of edges in an almost planar bipartite graphs, J. Math. Sci. 196 (2014) 737–746. https://doi.org/10.1007/s10958-014-1690-9

[2] S.G. Kobourov, G. Liotta and F. Montecchiani, An annotated bibliography on 1-planarity, Comput. Sci. Rev. 25 (2017) 49–67. https://doi.org/10.1016/j.cosrev.2017.06.002

[3] A. Nakamoto, K. Noguchi and K. Ozeki, Cyclic 4-colorings of graphs on surfaces, J. Graph Theory 82 (2016) 265–278. https://doi.org/10.1002/jgt.21900

[4] T. Nagasawa, K. Noguchi and Y. Suzuki, Optimal 1-embedded graphs which triangulate other surfaces, J. Nonlinear Convex Anal. 19 (2018) 1759–1770.

[5] G. Ringel, Ein Sechsfarbenproblem auf der Kugel, Abh. Math. Semin. Univ. Hambg. 29 (1965) 107–117. https://doi.org/10.1007/BF02996313

[6] H. Von Schumacher, Ein 7-Farbensatz 1-einbettbarer Graphen auf der projektiven Ebene, Abh. Math. Semin. Univ. Hambg. 54 (1984) 5–14. https://doi.org/10.1007/BF02941434