@article{DMGT_2023_43_1_a10,
author = {Shibuya, Hikari and Suzuki, Yusuke},
title = {A note on the upper bounds on the size of bipartite and tripartite 1-embeddable graphs on surfaces},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {171--177},
year = {2023},
volume = {43},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a10/}
}
TY - JOUR AU - Shibuya, Hikari AU - Suzuki, Yusuke TI - A note on the upper bounds on the size of bipartite and tripartite 1-embeddable graphs on surfaces JO - Discussiones Mathematicae. Graph Theory PY - 2023 SP - 171 EP - 177 VL - 43 IS - 1 UR - http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a10/ LA - en ID - DMGT_2023_43_1_a10 ER -
%0 Journal Article %A Shibuya, Hikari %A Suzuki, Yusuke %T A note on the upper bounds on the size of bipartite and tripartite 1-embeddable graphs on surfaces %J Discussiones Mathematicae. Graph Theory %D 2023 %P 171-177 %V 43 %N 1 %U http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a10/ %G en %F DMGT_2023_43_1_a10
Shibuya, Hikari; Suzuki, Yusuke. A note on the upper bounds on the size of bipartite and tripartite 1-embeddable graphs on surfaces. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 1, pp. 171-177. http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a10/
[1] D.V. Karpov, An upper bound on the number of edges in an almost planar bipartite graphs, J. Math. Sci. 196 (2014) 737–746. https://doi.org/10.1007/s10958-014-1690-9
[2] S.G. Kobourov, G. Liotta and F. Montecchiani, An annotated bibliography on 1-planarity, Comput. Sci. Rev. 25 (2017) 49–67. https://doi.org/10.1016/j.cosrev.2017.06.002
[3] A. Nakamoto, K. Noguchi and K. Ozeki, Cyclic 4-colorings of graphs on surfaces, J. Graph Theory 82 (2016) 265–278. https://doi.org/10.1002/jgt.21900
[4] T. Nagasawa, K. Noguchi and Y. Suzuki, Optimal 1-embedded graphs which triangulate other surfaces, J. Nonlinear Convex Anal. 19 (2018) 1759–1770.
[5] G. Ringel, Ein Sechsfarbenproblem auf der Kugel, Abh. Math. Semin. Univ. Hambg. 29 (1965) 107–117. https://doi.org/10.1007/BF02996313
[6] H. Von Schumacher, Ein 7-Farbensatz 1-einbettbarer Graphen auf der projektiven Ebene, Abh. Math. Semin. Univ. Hambg. 54 (1984) 5–14. https://doi.org/10.1007/BF02941434