On conditional connectivity of the Cartesian product of cycles
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 1, pp. 17-34
Voir la notice de l'article provenant de la source Library of Science
The conditional h-vertex (h-edge) connectivity of a connected graph H of minimum degree k gt;h is the size of a smallest vertex (edge) set F of H such that H - F is a disconnected graph of minimum degree at least h. Let G be the Cartesian product of r≥ 1 cycles, each of length at least four and let h be an integer such that 0≤ h≤ 2r-2. In this paper, we determine the conditional h-vertex-connectivity and the conditional h-edge-connectivity of the graph G. We prove that both these connectivities are equal to (2r-h)a_h^r, where a_h^r is the number of vertices of a smallest h-regular subgraph of G.
Keywords:
fault tolerance, hypercube, conditional connectivity, cut, Cartesian product
@article{DMGT_2023_43_1_a1,
author = {Saraf, J.B. and Borse, Y.M. and Mundhe, Ganesh},
title = {On conditional connectivity of the {Cartesian} product of cycles},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {17--34},
publisher = {mathdoc},
volume = {43},
number = {1},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a1/}
}
TY - JOUR AU - Saraf, J.B. AU - Borse, Y.M. AU - Mundhe, Ganesh TI - On conditional connectivity of the Cartesian product of cycles JO - Discussiones Mathematicae. Graph Theory PY - 2023 SP - 17 EP - 34 VL - 43 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a1/ LA - en ID - DMGT_2023_43_1_a1 ER -
Saraf, J.B.; Borse, Y.M.; Mundhe, Ganesh. On conditional connectivity of the Cartesian product of cycles. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 1, pp. 17-34. http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a1/