Covering the Edges of a Random Hypergraph by Cliques
Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 4, pp. 1333-1349

Voir la notice de l'article provenant de la source Library of Science

We determine the order of magnitude of the minimum clique cover of the edges of a binomial, r-uniform, random hypergraph G(r)(n, p), p fixed. In doing so, we combine the ideas from the proofs of the graph case (r = 2) in Frieze and Reed [Covering the edges of a random graph by cliques, Combinatorica 15 (1995) 489–497] and Guo, Patten, Warnke [Prague dimension of random graphs, manuscript submitted for publication].
Keywords: r-uniform random hypergraph, clique covering
@article{DMGT_2022_42_4_a17,
     author = {R\"odl, Vojt\v{e}ch and Ruci\'nski, Andrzej},
     title = {Covering the {Edges} of a {Random} {Hypergraph} by {Cliques}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {1333--1349},
     publisher = {mathdoc},
     volume = {42},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a17/}
}
TY  - JOUR
AU  - Rödl, Vojtěch
AU  - Ruciński, Andrzej
TI  - Covering the Edges of a Random Hypergraph by Cliques
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2022
SP  - 1333
EP  - 1349
VL  - 42
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a17/
LA  - en
ID  - DMGT_2022_42_4_a17
ER  - 
%0 Journal Article
%A Rödl, Vojtěch
%A Ruciński, Andrzej
%T Covering the Edges of a Random Hypergraph by Cliques
%J Discussiones Mathematicae. Graph Theory
%D 2022
%P 1333-1349
%V 42
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a17/
%G en
%F DMGT_2022_42_4_a17
Rödl, Vojtěch; Ruciński, Andrzej. Covering the Edges of a Random Hypergraph by Cliques. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 4, pp. 1333-1349. http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a17/