Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2022_42_4_a15, author = {de Wet, Johan P. and Frick, Marietjie}, title = {Nested {Locally} {Hamiltonian} {Graphs} and the {Oberly-Sumner} {Conjecture}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {1281--1312}, publisher = {mathdoc}, volume = {42}, number = {4}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a15/} }
TY - JOUR AU - de Wet, Johan P. AU - Frick, Marietjie TI - Nested Locally Hamiltonian Graphs and the Oberly-Sumner Conjecture JO - Discussiones Mathematicae. Graph Theory PY - 2022 SP - 1281 EP - 1312 VL - 42 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a15/ LA - en ID - DMGT_2022_42_4_a15 ER -
de Wet, Johan P.; Frick, Marietjie. Nested Locally Hamiltonian Graphs and the Oberly-Sumner Conjecture. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 4, pp. 1281-1312. http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a15/
[1] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, 2008).
[2] G. Chartrand and R. Pippert, Locally connected graphs,Čas. Pěst. Mat. 99 (1974) 158–163.
[3] G.T. Chen, A. Saito and S.L. Shan, The existence of a 2 -factor in a graph satisfying the local Chvátal-Erdős condition, SIAM J. Discrete Math. 27 (2013) 1788–1799. https://doi.org/10.1137/12090037X
[4] J.P. de Wet, Local Properties of Graphs (PhD Thesis, University of South Africa, 2016). http://uir.unisa.ac.za/bitstream/handle/10500/22278/thesisde%20wetjp.pdf?sequence=1&isAllowed=y
[5] J.P. de Wet and M. Frick, The Hamilton cycle problem for locally traceable and locally Hamiltonian graphs, Discrete Appl. Math. 266 (2019) 291–308. https://doi.org/10.1016/j.dam.2019.02.046
[6] J.P. de Wet, M. Frick and S.A. van Aardt, Hamiltonicity of locally Hamiltonian and locally traceable graphs, Discrete Appl. Math. 236 (2018) 137–152. https://doi.org/10.1016/j.dam.2017.10.030
[7] J.P. de Wet and S.A. van Aardt, Traceability of locally traceable and locally Hamiltonian graphs, Discrete Math. Theor. Comput. Sci. 17 (2016) 245–262.
[8] M.R. Garey, D.S. Johnson and R.E. Tarjan, The planar Hamiltonian circuit problem is NP-complete, SIAM J. Comput. 5 (1976) 704–714. https://doi.org/10.1137/0205049
[9] A. Goldner and F. Harary, Note on a smallest non-hamiltonian maximal planar graph, Bull. Malays. Math. Sci. Soc. 6 (1975) 41–42.
[10] L. Markenzon, C.M. Justel and N. Paciornik, Subclasses of k-trees: characterization and recognition, Discrete Appl. Math. 154 (2006) 818–825. https://doi.org/10.1016/j.dam.2005.05.021
[11] D.J. Oberly and D.P. Sumner, Every locally connected nontrivial graph with no induced claw is Hamiltonian, J. Graph Theory 3 (1979) 351–356. https://doi.org/10.1002/jgt.3190030405
[12] C.M. Pareek, On the maximum degree of locally Hamiltonian non-Hamiltonian graphs, Util. Math. 23 (1983) 103–120.
[13] C.M. Pareek and Z. Skupień, On the smallest non-Hamiltonian locally Hamiltonian graph, J. Univ. Kuwait (Sci.) 10 (1983) 9–17.
[14] D.J. Rose, On simple characterizations of k-trees, Discrete Math. 7 (1974) 317–322. https://doi.org/10.1016/0012-365X(74)90042-9
[15] Z. Skupień, Locally Hamiltonian and planar graphs, Fund. Math. 58 (1966) 193–200. https://doi.org/10.4064/fm-58-2-193-200
[16] S.A. van Aardt, M. Frick, O. Oellermann and J.P. de Wet, Global cycle properties in locally connected, locally traceable and locally Hamiltonian graphs, Discrete Appl. Math. 205 (2016) 171–179. https://doi.org/10.1016/j.dam.2015.09.022