@article{DMGT_2022_42_3_a15,
author = {Ahangar, H. Abdollahzadeh and Chellali, M. and Sheikholeslami, S.M. and Valenzuela-Tripodoro, J.C.},
title = {Total {Roman} {{2}-Dominating} {Functions} in {Graphs}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {937--958},
year = {2022},
volume = {42},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a15/}
}
TY - JOUR
AU - Ahangar, H. Abdollahzadeh
AU - Chellali, M.
AU - Sheikholeslami, S.M.
AU - Valenzuela-Tripodoro, J.C.
TI - Total Roman {2}-Dominating Functions in Graphs
JO - Discussiones Mathematicae. Graph Theory
PY - 2022
SP - 937
EP - 958
VL - 42
IS - 3
UR - http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a15/
LA - en
ID - DMGT_2022_42_3_a15
ER -
%0 Journal Article
%A Ahangar, H. Abdollahzadeh
%A Chellali, M.
%A Sheikholeslami, S.M.
%A Valenzuela-Tripodoro, J.C.
%T Total Roman {2}-Dominating Functions in Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2022
%P 937-958
%V 42
%N 3
%U http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a15/
%G en
%F DMGT_2022_42_3_a15
Ahangar, H. Abdollahzadeh; Chellali, M.; Sheikholeslami, S.M.; Valenzuela-Tripodoro, J.C. Total Roman {2}-Dominating Functions in Graphs. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 3, pp. 937-958. http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a15/
[1] B. Bollobás and E.J. Cockayne, Graph-theoretic parameters concerning domination, independence, and irredundance, J. Graph Theory 3 (1979) 241–249. https://doi.org/10.1002/jgt.3190030306
[2] M. Chellali, T.W. Haynes, S.T. Hedetniemi and A. McRae, Roman {2} -domination, Discrete Appl. Math. 204 (2016) 22–28. https://doi.org/10.1016/j.dam.2015.11.013
[3] H. Chen and C. Lu, A note on Roman 2 -domination problem in graphs . arXiv:1804-09338
[4] E.J. Cockayne, P.A. Dreyer, S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004) 11–22. https://doi.org/10.1016/j.disc.2003.06.004
[5] B. Courcelle, J.A. Makowsky and U. Rotics, Linear time solvable optimization problems on graphs of bounded clique-width, Theory Comput. Syst. 33 (2000) 125–150. https://doi.org/10.1007/s002249910009
[6] F. Harary and T.W. Haynes, Double domination in graphs, Ars Combin. 55 (2000) 201–213.
[7] W. Klostermeyer and G. MacGillivray, Roman, Italian, and 2 -domination, J. Combin. Math. Combin. Comput. 108 (2019) 125–146.
[8] M. Liedloff, T. Kloks, J. Liu and S.L. Peng, Effcient algorithms for Roman domination on some classes of graphs, Discrete Appl. Math. 156 (2008) 3400–3415. https://doi.org/10.1016/j.dam.2008.01.011
[9] C.S. ReVelle, Can you protect the Roman Empire ? Johns Hopkins Magazine 49 (1997) 40.
[10] C.S. ReVelle and K.E. Rosing, Defendens Imperium Romanum: A classical problem in military strategy, Amer. Math. Monthly 107 (2000) 585–594. https://doi.org/10.1080/00029890.2000.12005243
[11] I. Stewart, Defend the Roman Empire ! Sci. Amer. 281 (1999) 136–139. https://doi.org/10.1038/scientificamerican1299-136