@article{DMGT_2022_42_3_a12,
author = {Stani\'c, Zoran},
title = {Some {Properties} of the {Eigenvalues} of the {Net} {Laplacian} {Matrix} of a {Signed} {Graph}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {893--903},
year = {2022},
volume = {42},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a12/}
}
Stanić, Zoran. Some Properties of the Eigenvalues of the Net Laplacian Matrix of a Signed Graph. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 3, pp. 893-903. http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a12/
[1] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J. 23 (1973) 298–305.
[2] M. Fiedler, A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory, Czechoslovak Math. J. 25 (1975) 619–633.
[3] H. Gao, Z. Ji and T. Hou, Equitable partitions in the controllability of undirected signed graphs, in: Proceedings of IEEE 14th International Conference on Control and Automation (ICCA), Piscataway NJ, IEEE (2018) 532–537.
[4] S. Martini, M. Egerstedt and A. Bicchi, Controllability analysis of multi-agent systems using relaxed equitable partitions, Int. J. Systems, Control and Communications 2 (2010) 100–121. https://doi.org/10.1504/IJSCC.2010.031160
[5] Z. Stanić, Inequalities for Graph Eigenvalues (Cambridge University Press, Cambridge, 2015). https://doi.org/10.1017/CBO9781316341308
[6] Z. Stanić, Net Laplacian controllablity of joins of signed graphs, Discrete Appl. Math., 285 (2020) 197–203. https://doi.org/10.1016/j.dam.2020.05.011
[7] Z. Stanić, On the spectrum of the net Laplacian matrix of a signed graph, Bull. Math. Soc. Sci. Math. Roumanie 63 (2020) 205–213.
[8] T. Zaslavsky, Matrices in the theory of signed simple graphs, in: Advances in Discrete Mathematics and Applications: Mysore 2008, B.D. Acharya, G.O.H. Katona and J. Nešetřil (Ed(s)), (Ramanujan Math. Soc., Mysore, 2010) 207–229.