Some Properties of the Eigenvalues of the Net Laplacian Matrix of a Signed Graph
Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 3, pp. 893-903.

Voir la notice de l'article provenant de la source Library of Science

Given a signed graph Ġ, let A_Ġ and D_Ġ^± denote its standard adjacency matrix and the diagonal matrix of vertex net-degrees, respectively. The net Laplacian matrix of Ġ is defined to be N_Ġ = D_Ġ^± - A_Ġ. In this study we give some properties of the eigenvalues of N_Ġ. In particular, we consider their behaviour under some edge perturbations, establish some relations between them and the eigenvalues of the standard Laplacian matrix and give some lower and upper bounds for the largest eigenvalue of N_Ġ.
Keywords: (net) Laplacian matrix, edge perturbations, largest eigenvalue, net-degree
@article{DMGT_2022_42_3_a12,
     author = {Stani\'c, Zoran},
     title = {Some {Properties} of the {Eigenvalues} of the {Net} {Laplacian} {Matrix} of a {Signed} {Graph}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {893--903},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a12/}
}
TY  - JOUR
AU  - Stanić, Zoran
TI  - Some Properties of the Eigenvalues of the Net Laplacian Matrix of a Signed Graph
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2022
SP  - 893
EP  - 903
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a12/
LA  - en
ID  - DMGT_2022_42_3_a12
ER  - 
%0 Journal Article
%A Stanić, Zoran
%T Some Properties of the Eigenvalues of the Net Laplacian Matrix of a Signed Graph
%J Discussiones Mathematicae. Graph Theory
%D 2022
%P 893-903
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a12/
%G en
%F DMGT_2022_42_3_a12
Stanić, Zoran. Some Properties of the Eigenvalues of the Net Laplacian Matrix of a Signed Graph. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 3, pp. 893-903. http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a12/

[1] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J. 23 (1973) 298–305.

[2] M. Fiedler, A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory, Czechoslovak Math. J. 25 (1975) 619–633.

[3] H. Gao, Z. Ji and T. Hou, Equitable partitions in the controllability of undirected signed graphs, in: Proceedings of IEEE 14th International Conference on Control and Automation (ICCA), Piscataway NJ, IEEE (2018) 532–537.

[4] S. Martini, M. Egerstedt and A. Bicchi, Controllability analysis of multi-agent systems using relaxed equitable partitions, Int. J. Systems, Control and Communications 2 (2010) 100–121. https://doi.org/10.1504/IJSCC.2010.031160

[5] Z. Stanić, Inequalities for Graph Eigenvalues (Cambridge University Press, Cambridge, 2015). https://doi.org/10.1017/CBO9781316341308

[6] Z. Stanić, Net Laplacian controllablity of joins of signed graphs, Discrete Appl. Math., 285 (2020) 197–203. https://doi.org/10.1016/j.dam.2020.05.011

[7] Z. Stanić, On the spectrum of the net Laplacian matrix of a signed graph, Bull. Math. Soc. Sci. Math. Roumanie 63 (2020) 205–213.

[8] T. Zaslavsky, Matrices in the theory of signed simple graphs, in: Advances in Discrete Mathematics and Applications: Mysore 2008, B.D. Acharya, G.O.H. Katona and J. Nešetřil (Ed(s)), (Ramanujan Math. Soc., Mysore, 2010) 207–229.