On Hamiltonian Cycles in Claw-Free Cubic Graphs
Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 1, pp. 309-313.

Voir la notice de l'article provenant de la source Library of Science

We show that every claw-free cubic graph of order n at least 8 has at most 2n/4 Hamiltonian cycles, and we also characterize all extremal graphs.
Keywords: Hamiltonian cycle, claw-free graph, cubic graph
@article{DMGT_2022_42_1_a19,
     author = {Mohr, Elena and Rautenbach, Dieter},
     title = {On {Hamiltonian} {Cycles} in {Claw-Free} {Cubic} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {309--313},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a19/}
}
TY  - JOUR
AU  - Mohr, Elena
AU  - Rautenbach, Dieter
TI  - On Hamiltonian Cycles in Claw-Free Cubic Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2022
SP  - 309
EP  - 313
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a19/
LA  - en
ID  - DMGT_2022_42_1_a19
ER  - 
%0 Journal Article
%A Mohr, Elena
%A Rautenbach, Dieter
%T On Hamiltonian Cycles in Claw-Free Cubic Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2022
%P 309-313
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a19/
%G en
%F DMGT_2022_42_1_a19
Mohr, Elena; Rautenbach, Dieter. On Hamiltonian Cycles in Claw-Free Cubic Graphs. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 1, pp. 309-313. http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a19/

[1] A.T. Benjamin and J.J. Quinn, Recounting Fibonacci and Lucas identities, College Math. J. 30 (1999) 359–366. https://doi.org/10.1080/07468342.1999.11974086

[2] G.L. Chia and C. Thomassen, On the number of longest and almost longest cycles in cubic graphs, Ars Combin. 104 (2012) 307–320.