The Crossing Number of Hexagonal Graph H3,n in the Projective Plane
Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 1, pp. 197-218.

Voir la notice de l'article provenant de la source Library of Science

Thomassen described all (except finitely many) regular tilings of the torus S_1 and the Klein bottle N_2 into (3,6)-tilings, (4,4)-tilings and (6,3)-tilings. Many researchers made great efforts to investigate the crossing number of the Cartesian product of an m-cycle and an n-cycle, which is a special kind of (4,4)-tilings, either in the plane or in the projective plane. In this paper we study the crossing number of the hexagonal graph H_3,n (n ≥ 2), which is a special kind of (3,6)-tilings, in the projective plane, and prove that cr_N_1 (H_3,n) = 0, amp; n=2, n-1, amp; n ≥ 3.
Keywords: projective plane, crossing number, hexagonal graph, drawing
@article{DMGT_2022_42_1_a12,
     author = {Wang, Jing and Cai, Junliang and Lv, Shengxiang and Huang, Yuanqiu},
     title = {The {Crossing} {Number} of {Hexagonal} {Graph} {H\protect\textsubscript{3,n}} in the {Projective} {Plane}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {197--218},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a12/}
}
TY  - JOUR
AU  - Wang, Jing
AU  - Cai, Junliang
AU  - Lv, Shengxiang
AU  - Huang, Yuanqiu
TI  - The Crossing Number of Hexagonal Graph H3,n in the Projective Plane
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2022
SP  - 197
EP  - 218
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a12/
LA  - en
ID  - DMGT_2022_42_1_a12
ER  - 
%0 Journal Article
%A Wang, Jing
%A Cai, Junliang
%A Lv, Shengxiang
%A Huang, Yuanqiu
%T The Crossing Number of Hexagonal Graph H3,n in the Projective Plane
%J Discussiones Mathematicae. Graph Theory
%D 2022
%P 197-218
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a12/
%G en
%F DMGT_2022_42_1_a12
Wang, Jing; Cai, Junliang; Lv, Shengxiang; Huang, Yuanqiu. The Crossing Number of Hexagonal Graph H3,n in the Projective Plane. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 1, pp. 197-218. http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a12/

[1] J. Adamsson and R.B. Richter, Arrangements, circular arrangements and the crossing number of C 7 □ Cn, J. Combin. Theory Ser. B 90 (2004) 21–39. https://doi.org/10.1016/j.jctb.2003.05.001

[2] L.W. Beineke and R.D. Ringeisen, On the crossing numbers of products of cycles and graphs of order four, J. Graph Theory 4 (1980) 145–155. https://doi.org/10.1002/jgt.3190040203

[3] M.R. Garey and D.S. Johnson, Crossing number is NP-complete, SIAM J. Algebraic Discrete Methods 4 (1983) 312–316. https://doi.org/10.1137/0604033

[4] L.Y. Glebsky and G. Salazar, The crossing number of Cm□Cn is as conjectured for n ≥ m ( m + 1), J. Graph Theory 47 (2004) 53–72. https://doi.org/10.1002/jgt.20016

[5] P.T. Ho, The crossing number of K4,n on the real projective plane, Discrete Math. 304 (2005) 23–34. https://doi.org/10.1016/j.disc.2005.09.010

[6] P.T. Ho, A proof of the crossing number of K3,n in a surface, Discuss. Math. Graph Theory 27 (2007) 549–551. https://doi.org/10.7151/dmgt.1379

[7] P.T. Ho, The toroidal crossing number of K4,n, Discrete Math. 309 (2009) 3238–3248. https://doi.org/10.1016/j.disc.2008.09.029

[8] P.T. Ho, The projective plane crossing number of the circulant graph C(3k; {1, k}), Discuss. Math. Graph Theory 32 (2012) 91–108. https://doi.org/10.7151/dmgt.1588

[9] M. Klešč, R.B. Ritcher, I. Stobert, The crossing number of C5 × Cn, J. Graph Theory 22 (1996) 239–243. https://doi.org/10.1002/(SICI)1097-0118(199607)22:3¡239::AID-JGT4¿3.0.CO;2-N

[10] B. Mohar and C. Thomassen, Graphs on Surfaces (Johns Hopkins Univ. Press, Baltimore, 2001).

[11] R.B. Richter, G. Salazar, The crossing number of C6 × Cn, Australas. J. Combin. 23 (2001) 135–143.

[12] R.B. Richter and J.Širáň, The crossing number of K3,n in a surface, J. Graph Theory 21 (1996) 51–54. https://doi.org/10.1002/(SICI)1097-0118(199601)21:1¡51::AID-JGT7¿3.3.CO;2-6

[13] R.D. Ringeisen and L.W. Beineke, The crossing number of C3 × Cn, J. Combin. Theory Ser. B 24 (1978) 134–136. https://doi.org/10.1016/0095-8956(78)90014-X

[14] A. Riskin, The projective plane crossing number of C3 × Cn, J. Graph Theory 17 (1993) 683–693. https://doi.org/10.1002/jgt.3190170605

[15] A. Riskin, The genus 2 crossing number of K9, Discrete Math. 145 (1995) 211–227. https://doi.org/10.1016/0012-365X(94)00037-J

[16] C. Thomassen, Tilings of the torus and the Klein bottle and vertex-transitive graphs on a fixed surface, Trans. Amer. Math. Soc. 323 (1991) 605–635. https://doi.org/10.1090/S0002-9947-1991-1040045-3

[17] J. Wang, Z. Ouyang and Y. Huang, The crossing number of the hexagonal graph H3,n, Discuss. Math. Graph Theory 39 (2019) 547–554. https://doi.org/10.7151/dmgt.2092