@article{DMGT_2021_41_4_a9,
author = {Cichacz, Sylwia and G\"orlich, Agnieszka and Tuza, Zsolt},
title = {\ensuremath{\mathbb{Z}}\protect\textsubscript{2} {\texttimes} {\ensuremath{\mathbb{Z}}\protect\textsubscript{2}} {-Cordial} {Cycle-Free} {Hypergraphs}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {1021--1040},
year = {2021},
volume = {41},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a9/}
}
Cichacz, Sylwia; Görlich, Agnieszka; Tuza, Zsolt. ℤ2 × ℤ2 -Cordial Cycle-Free Hypergraphs. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 4, pp. 1021-1040. http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a9/
[1] I. Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, Ars Combin. 23 (1987) 201–207.
[2] N. Cairnie and K. Edwards, The computational complexity of cordial and equitable labelling, Discrete Math. 216 (2000) 29–34. https://doi.org/10.1016/S0012-365X(99)00295-2
[3] S. Cichacz, A. Görlich and Zs. Tuza, Cordial labeling of hypertrees, Discrete Math. 313 (2013) 2518–2524. https://doi.org/10.1016/j.disc.2013.07.025
[4] K. Driscoll, E. Krop and M. Nguyen, All trees are six-cordial, Electron. J. Graph Theory Appl. 5 (2017) 21–35. https://doi.org/10.5614/ejgta.2017.5.1.3
[5] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 17 (2010) #DS6.
[6] I.M. Gessel and L.H. Kalikow, Hypergraphs and a functional equation of Bouwkamp and De Bruijn, J. Comb. Theory Ser. A 110 (2005) 275–289. https://doi.org/10.1016/j.jcta.2004.11.002
[7] M. Hovey, A-cordial graphs, Discrete Math. 93 (1991) 183–194. https://doi.org/10.1016/0012-365X(91)90254-Y
[8] O. Pechenik and J. Wise, Generalized graph cordiality, Discuss. Math. Graph Theory 32 (2012) 557–567. https://doi.org/10.7151/dmgt.1626
[9] M. Tuczyński, P. Wenus and K. Węsek, On cordial hypertrees (2017). arXiv:1711.06294