Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2021_41_4_a7, author = {Dong, Aijun and Li, Tong}, title = {Neighbor {Product} {Distinguishing} {Total} {Colorings} of {Planar} {Graphs} with {Maximum} {Degree} at least {Ten}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {981--999}, publisher = {mathdoc}, volume = {41}, number = {4}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a7/} }
TY - JOUR AU - Dong, Aijun AU - Li, Tong TI - Neighbor Product Distinguishing Total Colorings of Planar Graphs with Maximum Degree at least Ten JO - Discussiones Mathematicae. Graph Theory PY - 2021 SP - 981 EP - 999 VL - 41 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a7/ LA - en ID - DMGT_2021_41_4_a7 ER -
%0 Journal Article %A Dong, Aijun %A Li, Tong %T Neighbor Product Distinguishing Total Colorings of Planar Graphs with Maximum Degree at least Ten %J Discussiones Mathematicae. Graph Theory %D 2021 %P 981-999 %V 41 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a7/ %G en %F DMGT_2021_41_4_a7
Dong, Aijun; Li, Tong. Neighbor Product Distinguishing Total Colorings of Planar Graphs with Maximum Degree at least Ten. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 4, pp. 981-999. http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a7/
[1] N. Alon, Combinatorial Nullstellensatz, Combin. Probab. Comput. 8 (1999) 7–29. https://doi.org/10.1017/S0963548398003411
[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (North-Holland, New York, 1976).
[3] X.E. Chen, On the adjacent vertex distinguishing total coloring numbers of graphs with Δ= 3, Discrete Math. 308 (2008) 4003–4007. https://doi.org/10.1016/j.disc.2007.07.091
[4] X.H. Cheng, G.H. Wang and J.L. Wu, The adjacent vertex distinguishing total chromatic numbers of planar graphs Δ = 10, J. Comb. Optim. 34 (2017) 383–397. https://doi.org/10.1007/s10878-016-9995-x
[5] X.H. Cheng and J.L. Wu, The adjacent vertex distinguishing total choosability of planar graphs with maximum degree at least eleven, J. Comb. Optim. 35 (2018) 1–13. https://doi.org/10.1007/s10878-017-0149-6
[6] L.H. Ding, G.H. Wang and G.Y. Yan, Neighbor sum distinguishing total colorings via the Combinatorial Nullstellensatz, Sci. China Math. 57 (2014) 1875–1882. https://doi.org/10.1007/s11425-014-4796-0
[7] L.H. Ding, G.H. Wang, J.L. Wu and J.G. Yu, Neighbor sum (set) distinguishing total choosability via the Combinatorial Nullstellensatz, Graphs Combin. 33 (2017) 885–900. https://doi.org/10.1007/s00373-017-1806-3
[8] S. Ge, J.G. Li and C.Q. Xu, Neighbor sum distinguishing total coloring of planar graphs without 5 -cycles, Theoret. Comput. Sci. 689 (2017) 169–175. https://doi.org/10.1016/j.tcs.2017.05.037
[9] D.J. Huang and W.F. Wang, Adjacent vertex distinguishing total coloring of planar graphs with large maximum degree, Sci. Sin. Math. 42 (2012) 151–164 (in Chinese). https://doi.org/10.1360/012011-359
[10] T. Li, C.Q. Qu, G.H. Wang and X.W. Yu, Neighbor product distinguishing total colorings, J. Comb. Optim. 33 (2017) 237–253. https://doi.org/10.1007/s10878-015-9952-0
[11] H.L. Li, B.Q. Liu and G.H. Wang, Neighbor sum distinguishing total colorings of K 4-minor free graphs, Front. Math. China 8 (2013) 1351–1366. https://doi.org/10.1007/s11464-013-0322-x
[12] H.L. Li, L.H. Ding, B.Q. Liu and G.H. Wang, Neighbor sum distinguishing total colorings of planar graphs, J. Comb. Optim. 30 (2015) 675–688. https://doi.org/10.1007/s10878-013-9660-6
[13] Y. Lu, J.A. Li, R. Luo and Z.K. Miao, Adjacent vertex distinguishing total coloring of graphs with maximum degree 4, Discrete Math. 340 (2017) 119–123. https://doi.org/10.1016/j.disc.2016.07.011
[14] Y. Lu, C.D. Xu and Z.K. Miao, Neighbor sum distinguishing list total coloring of subcubic graphs, J. Comb. Optim. 35 (2018) 778–793. https://doi.org/10.1007/s10878-017-0239-5
[15] C.Q. Qu, G.H. Wang, J.L. Wu and X.W. Yu, On the neighbor sum distinguishing total coloring of planar graphs, Theoret. Comput. Sci. 609 (2016) 162–170. https://doi.org/10.1016/j.tcs.2015.09.017
[16] H.J. Song and C.Q. Xu, Neighbor sum distinguishing total coloring of planar graphs without 4-cycles, J. Comb. Optim. 34 (2017) 1147–1158. https://doi.org/10.1007/s10878-017-0137-x
[17] L. Sun, X.H. Cheng and J.L. Wu, The adjacent vertex distinguishing total coloring of planar graphs without adjacent 4 -cycles, J. Comb. Optim. 33 (2017) 779–790. https://doi.org/10.1007/s10878-016-0004-1
[18] H.Y. Wang, On the adjacent vertex-distinguishing total chromatic numbers of the graphs with (G) = 3, J. Comb. Optim. 14 (2007) 87–109. https://doi.org/10.1007/s10878-006-9038-0
[19] H.Y. Wang, The adjacent vertex-distinguishing total chromatic number of 1-tree, Ars Combin. 91 (2009) 183–192.
[20] Y.Q. Wang and W.F. Wang, Adjacent vertex distinguishing total colorings of outer-planar graphs, J. Comb. Optim. 19 (2010) 123–133. https://doi.org/10.1007/s10878-008-9165-x
[21] W.F. Wang and P. Wang, On adjacent-vertex-distinguishing total coloring of K4-minor free graphs, Sci. China Ser. A Math. 39 (2009) 1462–1472 (in Chinese). https://doi.org/10.1360/za2009-39-12-1462
[22] W F. Wang and Y.Q. Wang, Adjacent vertex distinguishing total coloring of graphs with lower average degree, Taiwanese J. Math. 12 (2008) 979–990. https://doi.org/10.11650/twjm/1500404991
[23] W.F. Wang and D.J. Huang, The adjacent vertex distinguishing total coloring of planar graphs, J. Comb. Optim. 27 (2014) 379–396. https://doi.org/10.1007/s10878-012-9527-2
[24] D.L. Yang, L. Sun, X.W. Yu, J.L. Wu and S. Zhou, Neighbor sum distinguishing total chromatic number of planar graphs with maximum degree 10, Appl. Math. Comput. 314 (2017) 456–468. https://doi.org/10.1016/j.amc.2017.06.002
[25] Z.F. Zhang, X.E. Chen, J.W. Li, B. Yao, X.Z. Lu and J.F. Wang, On adjacent-vertex-distinguishing total coloring of graphs, Sci. China Math. 48 (2005) 289–299. https://doi.org/10.1360/03ys0207