Outpaths of Arcs in Regular 3-Partite Tournaments
Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 4, pp. 893-904.

Voir la notice de l'article provenant de la source Library of Science

Guo [Outpaths in semicomplete multipartite digraphs, Discrete Appl. Math. 95 (1999) 273–277] proposed the concept of the outpath in digraphs. An outpath of a vertex x (an arc xy, respectively) in a digraph is a directed path starting at x (an arc xy, respectively) such that x does not dominate the end vertex of this directed path. A k-outpath is an outpath of length k. The outpath is a generalization of the directed cycle. A c-partite tournament is an orientation of a complete c-partite graph. In this paper, we investigate outpaths of arcs in regular 3-partite tournaments. We prove that every arc of an r-regular 3-partite tournament has 2- (when r ≥ 1), 3- (when r ≥ 2), and 5-, 6-outpaths (when r ≥ 3). We also give the structure of an r-regular 3-partite tournament D with r ≥ 2 that contains arcs which have no 4-outpaths. Based on these results, we conjecture that for all k ∈ 1, 2, . . ., r − 1, every arc of r-regular 3-partite tournaments with r ≥ 2 has (3k − 1)- and 3k-outpaths, and it has a (3k + 1)-outpath except an r-regular 3-partite tournament.
Keywords: multipartite tournament, regular 3-partite tournament, out-paths
@article{DMGT_2021_41_4_a2,
     author = {Guo, Qiaoping and Meng, Wei},
     title = {Outpaths of {Arcs} in {Regular} {3-Partite} {Tournaments}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {893--904},
     publisher = {mathdoc},
     volume = {41},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a2/}
}
TY  - JOUR
AU  - Guo, Qiaoping
AU  - Meng, Wei
TI  - Outpaths of Arcs in Regular 3-Partite Tournaments
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2021
SP  - 893
EP  - 904
VL  - 41
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a2/
LA  - en
ID  - DMGT_2021_41_4_a2
ER  - 
%0 Journal Article
%A Guo, Qiaoping
%A Meng, Wei
%T Outpaths of Arcs in Regular 3-Partite Tournaments
%J Discussiones Mathematicae. Graph Theory
%D 2021
%P 893-904
%V 41
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a2/
%G en
%F DMGT_2021_41_4_a2
Guo, Qiaoping; Meng, Wei. Outpaths of Arcs in Regular 3-Partite Tournaments. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 4, pp. 893-904. http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a2/

[1] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, 2nd Edition (Springer, London, 2009). https://doi.org/10.1007/978-1-84800-998-1

[2] L. Cui and Q. Guo, Outpaths of arcs in almost regular multipartite tournaments, Acta Math. Appl. Sin. (Chinese Ser.) 39 (2016) 310–317.

[3] Q. Guo and L. Cui, Outpaths of all length of an arc in regular multipartite tournaments, Appl. Math. J. Chinese Univ. (Chinese Ser.) 29 (2014) 288–294.

[4] Y. Guo, Outpaths in semicomplete multipartite digraphs, Discrete Appl. Math. 95 (1999) 273–277. https://doi.org/10.1016/S0166-218X(99)00080-3

[5] L. Volkmann, Multipartite tournaments: a survey, Discrete Math. 307 (2007) 3097– 3129. https://doi.org/10.1016/j.disc.2007.03.053

[6] G. Xu, S. Li, Q. Guo and H. Li, Notes on cycles through a vertex or an arc in regular 3 -partite tournaments, Appl. Math. Lett. 25 (2012) 662–664. https://doi.org/10.1016/j.aml.2011.09.075

[7] G. Zhou and K. Zhang, Outpaths of arcs in multipartite tournaments, Acta Math. Appl. Sin. (Engl. Ser.) 17 (2001) 361–365.