Hereditary Equality of Domination and Exponential Domination in Subcubic Graphs
Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 4, pp. 1067-1075.

Voir la notice de l'article provenant de la source Library of Science

Let γ(G) and γe(G) denote the domination number and exponential domination number of graph G, respectively. Henning et al., in [Hereditary equality of domination and exponential domination, Discuss. Math. Graph Theory 38 (2018) 275–285] gave a conjecture: There is a finite set ℱ of graphs such that a graph G satisfies (H) = γe(H) for every induced subgraph H of G if and only if G is ℱ-free. In this paper, we study the conjecture for subcubic graphs. We characterize the class ℱ by minimal forbidden induced subgraphs and prove that the conjecture holds for subcubic graphs.
Keywords: dominating set, exponential dominating set, subcubic graphs
@article{DMGT_2021_41_4_a12,
     author = {Chen, Xue-Gang and Wang, Yu-Feng and Wu, Xiao-Fei},
     title = {Hereditary {Equality} of {Domination} and {Exponential} {Domination} in {Subcubic} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {1067--1075},
     publisher = {mathdoc},
     volume = {41},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a12/}
}
TY  - JOUR
AU  - Chen, Xue-Gang
AU  - Wang, Yu-Feng
AU  - Wu, Xiao-Fei
TI  - Hereditary Equality of Domination and Exponential Domination in Subcubic Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2021
SP  - 1067
EP  - 1075
VL  - 41
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a12/
LA  - en
ID  - DMGT_2021_41_4_a12
ER  - 
%0 Journal Article
%A Chen, Xue-Gang
%A Wang, Yu-Feng
%A Wu, Xiao-Fei
%T Hereditary Equality of Domination and Exponential Domination in Subcubic Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2021
%P 1067-1075
%V 41
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a12/
%G en
%F DMGT_2021_41_4_a12
Chen, Xue-Gang; Wang, Yu-Feng; Wu, Xiao-Fei. Hereditary Equality of Domination and Exponential Domination in Subcubic Graphs. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 4, pp. 1067-1075. http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a12/

[1] S. Bessy, P. Ochem and D. Rautenbach, Exponential domination in subcubic graphs, Electron. J. Combin. 23 (2016) #P4.42. https://doi.org/10.37236/5711

[2] P. Dankelmann, D. Day, D. Erwin, S. Mukwembi and H. Swart, Domination with exponential decay, Discrete Math. 309 (2009) 5877–5883. https://doi.org/10.1016/j.disc.2008.06.040

[3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998).

[4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, Inc., New York, 1998).

[5] M.A. Henning, S. Jäger and D. Rautenbach, Hereditary equality of domination and exponential domination, Discuss. Math. Graph Theory 38 (2018) 275–285. https://doi.org/10.7151/dmgt.2006