Distribution of Contractible Edges and the Structure of Noncontractible Edges having Endvertices with Large Degree in a 4-Connected Graph
Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 4, pp. 1051-1066.

Voir la notice de l'article provenant de la source Library of Science

Let G be a 4-connected graph G, and let Ec(G) denote the set of 4-contractible edges of G. We prove results concerning the distribution of edges in Ec(G). Roughly speaking, we show that there exists a set K0 and a mapping φ : K0 → Ec(G) such that |φ-1(e)| ≤ 4 for each e ∈ Ec(G).
Keywords: 4-connected graph, contractible edge, cross free
@article{DMGT_2021_41_4_a11,
     author = {Nakamura, Shunsuke},
     title = {Distribution of {Contractible} {Edges} and the {Structure} of {Noncontractible} {Edges} having {Endvertices} with {Large} {Degree} in a {4-Connected} {Graph}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {1051--1066},
     publisher = {mathdoc},
     volume = {41},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a11/}
}
TY  - JOUR
AU  - Nakamura, Shunsuke
TI  - Distribution of Contractible Edges and the Structure of Noncontractible Edges having Endvertices with Large Degree in a 4-Connected Graph
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2021
SP  - 1051
EP  - 1066
VL  - 41
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a11/
LA  - en
ID  - DMGT_2021_41_4_a11
ER  - 
%0 Journal Article
%A Nakamura, Shunsuke
%T Distribution of Contractible Edges and the Structure of Noncontractible Edges having Endvertices with Large Degree in a 4-Connected Graph
%J Discussiones Mathematicae. Graph Theory
%D 2021
%P 1051-1066
%V 41
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a11/
%G en
%F DMGT_2021_41_4_a11
Nakamura, Shunsuke. Distribution of Contractible Edges and the Structure of Noncontractible Edges having Endvertices with Large Degree in a 4-Connected Graph. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 4, pp. 1051-1066. http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a11/

[1] K. Ando and Y. Egawa, Edges not contained in triangles and the distribution of contractible edges in a 4 -connected graph, Discrete Math. 308 (2008) 3449–3460. https://doi.org/10.1016/j.disc.2007.07.013

[2] K. Ando, Y. Egawa, K. Kawarabayashi and M. Kriesell, On the number of 4- contractible edges in 4 -connected graphs, J. Combin. Theory Ser. B 99 (2009) 97–109. https://doi.org/10.1016/j.jctb.2008.04.003

[3] R. Diestel, Graph Theory, 5th Edition (Springer-Verlag, Heidelberg, 2017).

[4] K. Kotani and S. Nakamura, The existence condition of a 4 -connected graph with specified configurations, Far East J. Appl. Math. 98 (2018) 51–71. https://doi.org/10.17654/AM098010051