Distribution of Contractible Edges and the Structure of Noncontractible Edges having Endvertices with Large Degree in a 4-Connected Graph
Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 4, pp. 1051-1066
Cet article a éte moissonné depuis la source Library of Science
Let G be a 4-connected graph G, and let Ec(G) denote the set of 4-contractible edges of G. We prove results concerning the distribution of edges in Ec(G). Roughly speaking, we show that there exists a set K0 and a mapping φ : K0 → Ec(G) such that |φ-1(e)| ≤ 4 for each e ∈ Ec(G).
Keywords:
4-connected graph, contractible edge, cross free
@article{DMGT_2021_41_4_a11,
author = {Nakamura, Shunsuke},
title = {Distribution of {Contractible} {Edges} and the {Structure} of {Noncontractible} {Edges} having {Endvertices} with {Large} {Degree} in a {4-Connected} {Graph}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {1051--1066},
year = {2021},
volume = {41},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a11/}
}
TY - JOUR AU - Nakamura, Shunsuke TI - Distribution of Contractible Edges and the Structure of Noncontractible Edges having Endvertices with Large Degree in a 4-Connected Graph JO - Discussiones Mathematicae. Graph Theory PY - 2021 SP - 1051 EP - 1066 VL - 41 IS - 4 UR - http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a11/ LA - en ID - DMGT_2021_41_4_a11 ER -
%0 Journal Article %A Nakamura, Shunsuke %T Distribution of Contractible Edges and the Structure of Noncontractible Edges having Endvertices with Large Degree in a 4-Connected Graph %J Discussiones Mathematicae. Graph Theory %D 2021 %P 1051-1066 %V 41 %N 4 %U http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a11/ %G en %F DMGT_2021_41_4_a11
Nakamura, Shunsuke. Distribution of Contractible Edges and the Structure of Noncontractible Edges having Endvertices with Large Degree in a 4-Connected Graph. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 4, pp. 1051-1066. http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a11/
[1] K. Ando and Y. Egawa, Edges not contained in triangles and the distribution of contractible edges in a 4 -connected graph, Discrete Math. 308 (2008) 3449–3460. https://doi.org/10.1016/j.disc.2007.07.013
[2] K. Ando, Y. Egawa, K. Kawarabayashi and M. Kriesell, On the number of 4- contractible edges in 4 -connected graphs, J. Combin. Theory Ser. B 99 (2009) 97–109. https://doi.org/10.1016/j.jctb.2008.04.003
[3] R. Diestel, Graph Theory, 5th Edition (Springer-Verlag, Heidelberg, 2017).
[4] K. Kotani and S. Nakamura, The existence condition of a 4 -connected graph with specified configurations, Far East J. Appl. Math. 98 (2018) 51–71. https://doi.org/10.17654/AM098010051