Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2021_41_4_a10, author = {Kov\'a\v{r}, Petr and Krav\v{c}enko, Michal and Silber, Adam and Krbe\v{c}ek, Mat\v{e}j}, title = {Supermagic {Graphs} with {Many} {Different} {Degrees}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {1041--1050}, publisher = {mathdoc}, volume = {41}, number = {4}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a10/} }
TY - JOUR AU - Kovář, Petr AU - Kravčenko, Michal AU - Silber, Adam AU - Krbeček, Matěj TI - Supermagic Graphs with Many Different Degrees JO - Discussiones Mathematicae. Graph Theory PY - 2021 SP - 1041 EP - 1050 VL - 41 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a10/ LA - en ID - DMGT_2021_41_4_a10 ER -
%0 Journal Article %A Kovář, Petr %A Kravčenko, Michal %A Silber, Adam %A Krbeček, Matěj %T Supermagic Graphs with Many Different Degrees %J Discussiones Mathematicae. Graph Theory %D 2021 %P 1041-1050 %V 41 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a10/ %G en %F DMGT_2021_41_4_a10
Kovář, Petr; Kravčenko, Michal; Silber, Adam; Krbeček, Matěj. Supermagic Graphs with Many Different Degrees. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 4, pp. 1041-1050. http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a10/
[1] M. Bača, I. Holländer and K.-W. Lih, Two classes of super-magic graphs, J. Combin. Math. Combin. Comput. 23 (1997) 113–120.
[2] S. Drajnová, J. Ivančo and A. Semaničová, Numbers of edges in supermagic graphs, J. Graph Theory 52 (2006) 15–26. https://doi.org/10.1002/jgt.20144
[3] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. (2018) #DS 6.
[4] Y.S. Ho and S.M. Lee, Some initial results on the supermagicness of regular complete k-partite graphs, J. Combin. Math. Combin. Comput. 39 (2001) 3–17.
[5] N. Hartsfield and G. Ringel, Supermagic and antimagic graphs, J. Recreat. Math. 21 (1989) 107–115.
[6] N. Hartsfield and G. Ringel, Pearls in Graph Theory: A Comprehensive Introduction (Academic Press, San Diego, 1990).
[7] J. Ivančo, On supermagic regular graphs, Math. Bohem. 125 (2000) 99–114. https://doi.org/10.21136/MB.2000.126259
[8] J. Ivančo, Z. Lastivková and A. Semaničová, On magic and supermagic line graphs, Math. Bohem. 129 (2004) 33–42. https://doi.org/10.21136/MB.2004.134107
[9] J. Ivančo and T. Polláková, Supermagic graphs having a saturated vertex, Discuss. Math. Graph Theory 34 (2014) 75–84. https://doi.org/10.7151/dmgt.1711
[10] J. Ivančo and A. Semaničová, Some constructions of supermagic graphs using antimagic graphs, SUT J. Math. 42 (2006) 177–186.
[11] J. Ivančo and A. Semaničová, Some constructions of supermagic non-regular graphs, Australas. J. Combin. 38 (2007) 127–139.
[12] J. Sedláček, On magic graphs, Math. Slovaca 26 (1976) 329–335.
[13] J. Sedláček, Problem 27, in: Theory of Graphs and Its Applications, (Proc. Symp. Smolenice, 1963) 163–164.
[14] W.C. Shiu, P.C.B. Lam and H.L. Cheng, Supermagic labeling of an s-duplicate of K n,n, Congr. Numer. 146 (2000) 119–124.
[15] W.C. Shiu, P.C.B. Lam and S.M. Lee, On a construction of supermagic graphs, J. Combin. Math. Combin. Comput. 42 (2002) 147–160.
[16] B.M. Stewart, Magic graphs, Canad. J. Math. 18 (1966) 1031–1059. https://doi.org/10.4153/CJM-1966-104-7
[17] B.M. Stewart, Supermagic complete graphs, Canad. J. Math. 19 (1967) 427–438. https://doi.org/10.4153/CJM-1967-035-9