Decompositions of Complete Bipartite Graphs and Complete Graphs Into Paths, Stars, and Cycles with Four Edges Each
Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 2, pp. 451-468.

Voir la notice de l'article provenant de la source Library of Science

Let G be either a complete graph of odd order or a complete bipartite graph in which each vertex partition has an even number of vertices. In this paper, we determine the set of triples (p, q, r), with p, q, r gt; 0, for which there exists a decomposition of G into p paths, q stars, and r cycles, each of which has 4 edges.
Keywords: complete graph, complete bipartite graph, path, star, cycle, decomposition
@article{DMGT_2021_41_2_a7,
     author = {Shyu, Tay-Woei},
     title = {Decompositions of {Complete} {Bipartite} {Graphs} and {Complete} {Graphs} {Into} {Paths,} {Stars,} and {Cycles} with {Four} {Edges} {Each}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {451--468},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a7/}
}
TY  - JOUR
AU  - Shyu, Tay-Woei
TI  - Decompositions of Complete Bipartite Graphs and Complete Graphs Into Paths, Stars, and Cycles with Four Edges Each
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2021
SP  - 451
EP  - 468
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a7/
LA  - en
ID  - DMGT_2021_41_2_a7
ER  - 
%0 Journal Article
%A Shyu, Tay-Woei
%T Decompositions of Complete Bipartite Graphs and Complete Graphs Into Paths, Stars, and Cycles with Four Edges Each
%J Discussiones Mathematicae. Graph Theory
%D 2021
%P 451-468
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a7/
%G en
%F DMGT_2021_41_2_a7
Shyu, Tay-Woei. Decompositions of Complete Bipartite Graphs and Complete Graphs Into Paths, Stars, and Cycles with Four Edges Each. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 2, pp. 451-468. http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a7/

[1] A. Abueida and M. Daven, Multidesigns for graph-pairs of order 4 and 5, Graphs Combin. 19 (2003) 433–447. doi:10.1007/s00373-003-0530-3

[2] A. Abueida and M. Daven, Multidecompositons of the complete graph, Ars Combin. 72 (2004) 17–22.

[3] A. Abueida and T. O’Neil, Multidecomposition of λKm into small cycles and claws, Bull. Inst. Combin. Appl. 49 (2007) 32–40.

[4] A. Abueida and M. Daven, Multidecompositions of several graph products, Graphs Combin. 29 (2013) 315–326. doi:10.1007/s00373-011-1127-x

[5] A. Abueida and C. Lian, On the decompositions of complete graphs into cycles and stars on the same number of edges, Discuss. Math. Graph Theory 34 (2014) 113–125. doi:10.7151/dmgt.1719

[6] B. Alspach and H. Gavlas, Cycle decompositions of Kn and Kn − I, J. Combin. Theory Ser. B 81 (2001) 77–99. doi:10.1006/jctb.2000.1996

[7] F. Beggas, M. Haddad and H. Kheddouci, Decomposition of complete multigraphs into stars and cycles, Discuss. Math. Graph Theory 35 (2015) 629–639. doi:10.7151/dmgt.1820

[8] A. Bouchet and J. L. Fouquet, Trois types de décomposition d’un graphe en chaînes, Ann. Discrete Math. 17 (1983) 131–141.

[9] D.A. Bryant, S. El-Zanati, C.V. Eyden and D.G. Hoffman, Star decompositions of cubes, Graphs Combin. 17 (2001) 55–59. doi:10.1007/s003730170054

[10] D. Bryant and C.A. Rodger, Cycle Decompositions, in: The CRC Handbook of Combinatorial Designs, 2nd Edition, C.J. Colbourn and J.H. Dinitz (Ed(s)), (CRC Press, Boca Raton, 2007) 373–382.

[11] C.-M. Fu, Y.-L. Lin, S.-W. Lo and Y.-F. Hsu, Decomposition of complete graphs into triangles and claws, Taiwanese J. Math. 18 (2014) 1563–1581. doi:10.11650/tjm.18.2014.3169

[12] K. Heinrich, Path-decompositions, Le Matematiche 47 (1992) 241–258.

[13] K. Heinrich, J. Liu and M. Yu, P 4 -decomposition of regular graphs, J. Graph Theory 31 (1999) 135–143. doi:10.1002/(SICI)1097-0118(199906)31:2h135::AID-JGT6i3.0.CO;2-I

[14] M.S. Jacobson, M. Truszczyński and Zs. Tuza, Decompositions of regular bipartite graphs, Discrete Math. 89 (1991) 17–27. doi:10.1016/0012-365X(91)90396-J

[15] S. Jeevadoss and A. Muthusamy, Decomposition of complete bipartite graphs into paths and cycles, Discrete Math. 331 (2014) 98–108. doi:10.1016/j.disc.2014.05.009

[16] S. Jeevadoss and A. Muthusamy, Decomposition of complete bipartite multigraphs into paths and cycles having k edges, Discuss. Math. Graph Theory 35 (2015) 715–731. doi:10.7151/dmgt.1830

[17] A. Kotzig, From the theory of finite regular graphs of degree three and four, Ȉ Časopis Pěst. Mat. 82 (1957) 76–92.

[18] C.S. Kumar, On P 4 -decomposition of graphs, Taiwanese J. Math. 7 (2003) 657–664. doi:10.11650/twjm/1500407584

[19] H.-C. Lee, M.-J. Lee and C. Lin, Isomorphic path decompositions of λKn,n,n (λK*n,n,n) for odd n, Taiwanese J. Math. 13 (2009) 393–402. doi:10.11650/twjm/1500405344

[20] H.-C. Lee, Multidecompositions of complete bipartite graphs into cycles and stars, Ars Combin. 108 (2013) 355–364.

[21] H.-C. Lee and J.-J. Lin, Decomposition of the complete bipartite graph with a 1-factor removed into cycles and stars, Discrete Math. 313 (2013) 2354–2358. doi:10.1016/j.disc.2013.06.014

[22] H.-C. Lee and Y.-P. Chu, Multidecompositions of the balanced complete bipartite graph into paths and stars, ISRN Combinatorics (2013), Article ID: 398473.

[23] H.-C. Lee, Decomposition of the complete bipartite multigraph into cycles and stars, Discrete Math. 338 (2015) 1362–1369. doi:10.1016/j.disc.2015.02.019

[24] J.-J. Lin, Decompositions of multicrowns into cycles and stars, Taiwanese J. Math. 19 (2015) 1261–1270. doi:10.11650/tjm.19.2015.3460

[25] C. Lin, J.-J. Lin and T.-W. Shyu, Isomorphic star decomposition of multicrowns and the power of cycles, Ars Combin. 53 (1999) 249–256.

[26] J.-J. Lin and M.-J. Jou, {Ck, Pk, Sk} -decompositions of balanced complete bipartite Graphs, Open J. Discrete Math. 6 (2016) 174–179. doi:10.4236/ojdm.2016.63015

[27] C.C. Lindner and C.A. Rodger, Decomposition in Cycles II: Cycle Systems, in: Contemporary Design Theory: A Collection of Surveys, J.H. Dinitz and D.R. Stinson (Ed(s)), (New York, Wiley & Sons, Inc., 1992) 325–369.

[28] C.A. Parker, Complete Bipartite Graph Path Decompositions, Ph.D. Dissertation (Auburn University, Auburn, Alabama, 1998).

[29] H.M. Priyadharsini and A. Muthusamy, (Gm, Hm)-multifactorization of λKm, J. Combin. Math. Combin. Comput. 69 (2009) 145–150.

[30] H.M. Priyadharsini and A. Muthusamy, (Gm, Hm)-multifactorization of Km,m(λ), Bull. Inst. Combin. Appl. 66 (2012) 42–48.

[31] M.Šajna, Cycle decompositions III: complete graphs and fixed length cycles, J. Combin. Des. 10 (2002) 27–78. doi:10.1002/jcd.1027

[32] T.-W. Shyu, Decomposition of complete graphs into paths and stars, Discrete Math. 310 (2010) 2164–2169. doi:10.1016/j.disc.2010.04.009

[33] T.-W. Shyu, Decompositions of complete graphs into paths and cycles, Ars Combin. 97 (2010) 257–270.

[34] T.-W. Shyu, Decomposition of complete graphs into paths of length three and triangles, Ars Combin. 107 (2012) 209–224.

[35] T.-W. Shyu, Decomposition of complete graphs into cycles and stars, Graphs Combin. 29 (2013) 301–313. doi:10.1007/s00373-011-1105-3

[36] T.-W. Shyu, Decomposition of complete bipartite graphs into paths and stars with same number of edges, Discrete Math. 313 (2013) 865–871. doi:10.1016/j.disc.2012.12.020

[37] T.-W. Shyu, Decomposition of complete bipartite digraphs and complete digraphs into directed paths and directed cycles of fixed even length, Graphs Combin. 31 (2015) 1715–1725. doi:10.1007/s00373-014-1442-0

[38] D. Sotteau, Decomposition of Km,n (K*m,n) into cycles (circuits) of length 2k, J. Combin. Theory Ser. B 30 (1981) 75–81. doi:10.1016/0095-8956(81)90093-9

[39] M. Tarsi, Decomposition of complete multigraphs into stars, Discrete Math. 26 (1979) 273–278. doi:10.1016/0012-365X(79)90034-7

[40] M. Tarsi, Decomposition of complete multigraph into simple paths: nonbalanced handcuffied designs, J. Combin. Theory Ser. A 34 (1983) 60–70. doi:10.1016/0097-3165(83)90040-7

[41] S. Tazawa, Decomposition of a complete multipartite graph into isomorphic claws, SIAM J. Algebraic Discrete Methods 6 (1985) 413–417. doi:10.1137/0606043

[42] M. Truszczyński, Note on the decomposition of λKm,n(λK*m,n) into paths, Discrete Math. 55 (1985) 89–96. doi:10.1016/S0012-365X(85)80023-6

[43] K. Ushio, S. Tazawa and S. Yamamoto, On claw-decomposition of complete multi-partite graphs, Hiroshima Math. J. 8 (1978) 207–210. doi:10.32917/hmj/1206135570

[44] S. Yamamoto, H. Ikeda, S. Shige-ede, K. Ushio and N. Hamada, On claw decomposition of complete graphs and complete bigraphs, Hiroshima Math. J. 5 (1975) 33–42. doi:10.32917/hmj/1206136782