Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2021_41_2_a12, author = {Niu, Bei and Zhang, Xin}, title = {On (p, {1)-Total} {Labelling} of {Some} {1-Planar} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {531--558}, publisher = {mathdoc}, volume = {41}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a12/} }
Niu, Bei; Zhang, Xin. On (p, 1)-Total Labelling of Some 1-Planar Graphs. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 2, pp. 531-558. http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a12/
[1] F. Bazzaro, M. Montassier and A. Raspaud, (d, 1)-total labelling of planar graphs with large girth and high maximum degree, Discrete Math. 307 (2007) 2141–2151. doi:10.1016/j.disc.2005.12.059
[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (North-Holland, New York, 1976).
[3] O.V. Borodin, A new proof of the 6 color theorem, J. Graph Theory 19 (1995) 507–521. doi:10.1002/jgt.3190190406
[4] O.V. Borodin, Solution of Ringel’s problems on the vertex-face coloring of plane graphs and on the coloring of 1 -planar graphs, Diskret. Analiz 41 (1984) 12–26.
[5] J.R. Griggs and R.K. Yeh, Labeling graphs with a condition at distance two, SIAM J. Discrete Math. 5 (1992) 586–595. doi:10.1137/0405048
[6] I. Fabrici and T. Madaras, The structure of 1 -planar graphs, Discrete Math. 307 (2007) 854–865. doi:10.1016/j.disc.2005.11.056
[7] F. Havet, (d, 1)-total labelling of graphs, in: Workshop on Graphs and Algorithms (Dijon, France, 2003).
[8] F. Havet and M.-L. Yu, (d, 1)-total labelling of graphs, Technical Report, 4650 (INRIA, 2002).
[9] F. Havet and M.-L. Yu, (p, 1)-total labelling of graphs, Discrete Math. 308 (2008) 496–513. doi:10.1016/j.disc.2007.03.034
[10] L. Kowalik, J.-S. Sereni and R. Škrekovski, Total-coloring of plane graphs with maximum degree nine, SIAM J. Discrete Math. 22 (2008) 1462–1479. doi:10.1137/070688389
[11] S.G. Kobourov, G. Liotta and F. Montecchiani, An annotated bibliography on 1-planarity, Comput. Sci. Rev. 25 (2017) 49–67. doi:10.1016/j.cosrev.2017.06.002
[12] M. Montassier and A. Raspaud, (d, 1)-total labeling of graphs with a given maximum average degree, J. Graph Theory 51 (2006) 93–109. doi:10.1002/jgt.20124
[13] G. Ringel, Ein Sechsfarbenproblem auf der Kugel, Abh. Math. Semin. Univ. Hambg. 29 (1965) 107–117. doi:10.1007/BF02996313
[14] L. Sun and J.-L. Wu, On (p, 1)-total labelling of planar graphs, J. Comb. Optim. 33 (2017) 317–325. doi:10.1007/s10878-015-9958-7
[15] J.-L. Wu and P. Wang, List-edge and list-total colorings of graphs embedded on hyperbolic surfaces, Discrete Math. 308 (2008) 6210–6215. doi:10.1016/j.disc.2007.11.044
[16] R.K. Yeh, Labelling Graphs with a Condition at Distance Two, Ph.D. Thesis (Dept. of Math., Univ. of South Carolina, Columbia, SC, USA, 1990).
[17] Y. Yu, X. Zhang, G. Wang, G. Liu and J. Li, (2, 1)-total labelling of planar graphs with large maximum degree, J. Discrete Math. Sci. Cryptogr. 20 (2017) 1625–1636. doi:10.1080/09720529.2016.1139850
[18] X. Zhang, B. Niu and J. Yu, A structure of 1-planar graph and its applications to coloring problems, Graphs Combin. 35 (2019) 677–688. doi:10.1007/s00373-019-02027-0
[19] X. Zhang and J.-L. Wu, On edge colorings of 1-planar graphs, Inform. Process. Lett. 111 (2011) 124–128. doi:10.1016/j.ipl.2010.11.001
[20] X. Zhang, J.-L. Wu and G. Liu, List edge and list total coloring of 1-planar graphs, Front. Math. China 7 (2012) 1005–1018. doi:10.1007/s11464-012-0184-7
[21] X. Zhang, Y. Yu and G. Liu, On (p, 1)-total labelling of 1-planar graphs, Cent. Eur. J. Math. 9 (2011) 1424–1434. doi:10.2478/s11533-011-0092-1