Intersection Dimension and Graph Invariants
Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 1, pp. 153-166 Cet article a éte moissonné depuis la source Library of Science

Voir la notice de l'article

We show that the intersection dimension of graphs with respect to several hereditary properties can be bounded as a function of the maximum degree. As an interesting special case, we show that the circular dimension of a graph with maximum degree Δ is at most O(ΔlogΔ/log logΔ). It is also shown that permutation dimension of any graph is at most Δ(log Δ)^1+o(1). We also obtain bounds on intersection dimension in terms of treewidth.
Keywords: circular dimension, dimensional properties, forbidden-subgraph colorings
@article{DMGT_2021_41_1_a9,
     author = {Aravind, N.R. and Subramanian, C.R.},
     title = {Intersection {Dimension} and {Graph} {Invariants}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {153--166},
     year = {2021},
     volume = {41},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a9/}
}
TY  - JOUR
AU  - Aravind, N.R.
AU  - Subramanian, C.R.
TI  - Intersection Dimension and Graph Invariants
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2021
SP  - 153
EP  - 166
VL  - 41
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a9/
LA  - en
ID  - DMGT_2021_41_1_a9
ER  - 
%0 Journal Article
%A Aravind, N.R.
%A Subramanian, C.R.
%T Intersection Dimension and Graph Invariants
%J Discussiones Mathematicae. Graph Theory
%D 2021
%P 153-166
%V 41
%N 1
%U http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a9/
%G en
%F DMGT_2021_41_1_a9
Aravind, N.R.; Subramanian, C.R. Intersection Dimension and Graph Invariants. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 1, pp. 153-166. http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a9/

[1] A. Adiga, D. Bhowmick and L.S. Chandran, Boxicity and poset dimension, SIAM J. Discrete Math. 25 (2011) 1687–1698. doi: 10.1137/100786290

[2] M.O. Albertson, G.G. Chappell, H.A. Kierstead, A. Kündgen and R. Ramamurthi, Coloring with no 2-colored P 4 's, Electron. J. Combin. 11 (2004) #R26.

[3] N. Alon, C. McDiarmid and B.A. Reed, Acyclic coloring of graphs, Random Structures Algorithms 2 (1991) 277–288. doi: 10.1002/rsa.3240020303

[4] N.R. Aravind and C.R. Subramanian, Bounds on edge colorings with restrictions on the union of color classes, SIAM J. Discrete Math. 24 (2010) 841–852. doi: 10.1137/080733917

[5] N.R. Aravind and C.R. Subramanian, Bounds on vertex colorings with restrictions on the union of color classes, J. Graph Theory 66 (2011) 213–234. doi: 10.1002/jgt.20501

[6] N.R. Aravind and C.R. Subramanian, Forbidden subgraph colorings and the oriented chromatic number, European J. Combin. 34 (2013) 620–631. doi: 10.1016/j.ejc.2011.09.045

[7] A. Brandstädt, V.B. Le and J.P. Spinrad, Graph Classes: A Survey (SIAM Monographs on Discrete Mathematics and Applications, 1999). doi: 10.1137/1.9780898719796

[8] L.S. Chandran, M.C. Francis and N. Sivadasan, Boxicity and maximum degree, J. Combin. Theory Ser. B 98 (2008) 443–445. doi: 10.1016/j.jctb.2007.08.002

[9] L.S. Chandran and N. Sivadasan, Boxicity and treewidth, J. Combin. Theory Ser. B 97 (2007) 733–744. doi: 10.1016/j.jctb.2006.12.004

[10] M.B. Cozzens and F.S. Roberts, On dimensional properties of graphs, Graphs Combin. 5 (1989) 29–46. doi: 10.1007/BF01788656

[11] L. Esperet, Boxicity of graphs with bounded degree, European J. Combin. 30 (2009) 1277–1280. doi: 10.1016/j.ejc.2008.10.003

[12] R.B. Feinberg, The circular dimension of a graph, Discrete Math. 25 (1979) 27–31.

[13] G. Fertin, A. Raspaud and B.A. Reed, Star coloring of graphs, J. Graph Theory 47 (2004) 163–182. doi: 10.1002/jgt.20029

[14] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs (Annals of Mathematics 57, Elsevier, 2004).

[15] I.B.-A. Hartman, I. Newman and R. Ziv, On grid intersection graphs, Discrete Math. 87 (1991) 41–52. doi: 10.1016/0012-365X(91)90069-E

[16] H. Hind, M. Molloy and B. Reed, Colouring a graph frugally, Combinatorica 17 (1997) 469–482.

[17] J. Kratochvil and Zs. Tuza, Intersection dimension of graph classes, Graphs Combin. 10 (1994) 159–168.

[18] B. Mohar and S. Špacapan, Coloring parameters for graphs on surfaces, Electron. Notes Discrete Math. 31 (2008) 281–286. doi: 10.1016/j.endm.2008.06.057

[19] M. Molloy and B. Reed, Asymptotically optimal frugal coloring, J. Combin. Theory Ser. B 100 (2010) 226–246. doi: 10.1016/j.jctb.2009.07.002

[20] J. Nešetřil and P. Ossona de Mendez, Colorings and homomorphisms of minor closed classes, in: Discrete and Computational Geometry, The Goodman-Pollack Festschrift, B. Aronov, S. Basu, J. Pach and M. Sharir (Ed(s)), (Springer-Verlag, 2003) 651–664.

[21] J.B. Shearer, A note on circular dimension, Discrete Math. 29 (1980) 103. doi: 10.1016/0012-365X(90)90290-X

[22] E.R. Scheinerman, Intersection Classes and Multiple Intersection Parameters (Princeton University, 1984).

[23] C. Thomassen, Interval representations of planar graphs, J. Combin. Theory Ser. B 40 (1986) 9–20. doi: 10.1016/0095-8956(86)90061-4