Intersection Dimension and Graph Invariants
Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 1, pp. 153-166

Voir la notice de l'article provenant de la source Library of Science

We show that the intersection dimension of graphs with respect to several hereditary properties can be bounded as a function of the maximum degree. As an interesting special case, we show that the circular dimension of a graph with maximum degree Δ is at most O(ΔlogΔ/log logΔ). It is also shown that permutation dimension of any graph is at most Δ(log Δ)^1+o(1). We also obtain bounds on intersection dimension in terms of treewidth.
Keywords: circular dimension, dimensional properties, forbidden-subgraph colorings
@article{DMGT_2021_41_1_a9,
     author = {Aravind, N.R. and Subramanian, C.R.},
     title = {Intersection {Dimension} and {Graph} {Invariants}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {153--166},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a9/}
}
TY  - JOUR
AU  - Aravind, N.R.
AU  - Subramanian, C.R.
TI  - Intersection Dimension and Graph Invariants
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2021
SP  - 153
EP  - 166
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a9/
LA  - en
ID  - DMGT_2021_41_1_a9
ER  - 
%0 Journal Article
%A Aravind, N.R.
%A Subramanian, C.R.
%T Intersection Dimension and Graph Invariants
%J Discussiones Mathematicae. Graph Theory
%D 2021
%P 153-166
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a9/
%G en
%F DMGT_2021_41_1_a9
Aravind, N.R.; Subramanian, C.R. Intersection Dimension and Graph Invariants. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 1, pp. 153-166. http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a9/