Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2021_41_1_a18, author = {Meng, Wei}, title = {Arc-Disjoint {Hamiltonian} {Paths} in {Strong} {Round} {Decomposable} {Local} {Tournaments}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {297--310}, publisher = {mathdoc}, volume = {41}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a18/} }
TY - JOUR AU - Meng, Wei TI - Arc-Disjoint Hamiltonian Paths in Strong Round Decomposable Local Tournaments JO - Discussiones Mathematicae. Graph Theory PY - 2021 SP - 297 EP - 310 VL - 41 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a18/ LA - en ID - DMGT_2021_41_1_a18 ER -
Meng, Wei. Arc-Disjoint Hamiltonian Paths in Strong Round Decomposable Local Tournaments. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 1, pp. 297-310. http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a18/
[1] J. Bang-Jensen, Locally semicomplete digraphs: A generalization of tournaments, J. Graph Theory 14 (1990) 371–390. doi: 10.1002/jgt.3190140310
[2] J. Bang-Jensen, Y. Guo, G. Gutin and L. Volkmann, A classification of locally semicomplete digraphs, Discrete Math. 167/168 (1997) 101–114. doi: 10.1016/S0012-365X(96)00219-1
[3] J. Bang-Jensen and G. Gutin, Classes of Directed Graphs (Springer Monographs in Mathematics, 2018). doi: 10.1007/978-3-319-71840-8
[4] J. Bang-Jensen and J. Huang, Decomposing locally semicomplete digraphs into strong spanning subdigraphs, J. Combin. Theory Ser. B 102 (2012) 701–714. doi: 10.1016/j.jctb.2011.09.001
[5] Y. Guo, Locally Semicomplete Digraphs, Ph.D. Thesis, RWTH (Aachen, Germany, 1995).
[6] R. Li and T. Han, Arc-disjoint Hamiltonian paths in non-round decomposable local tournaments, Discrete Math. 340 (2017) 2916–2924. doi: 10.1016/j.disc.2017.07.024
[7] R. Li and T. Han, Arc-disjoint Hamiltonian cycles in round decomposable local tournaments, Discuss. Math. Graph Theory 38 (2018) 477–490. doi: 10.7151/dmgt.2023
[8] D. Meierling, Local tournaments with the minimum number of Hamiltonian cycles or cycles of length three, Discrete Math. 310 (2010) 1940–1948. doi: 10.1016/j.disc.2010.03.003
[9] W. Meng, J. Guo, M. Lu, Y. Guo and L. Volkmann, Universal arcs in local tournaments, Discrete Math. 340 (2017) 2900–2915. doi: 10.1016/j.disc.2017.07.025
[10] W. Meng, S. Li, Y. Guo and G. Xu, A local tournament contains a vertex whose out-arcs are psedo-girth-pancyclic, J. Graph Theory 62 (2009) 346–361. doi: 10.1002/jgt.20410
[11] C. Thomassen, Edge-disjoint Hamiltonian paths and cycles in tournaments, J. Combin. Theory Ser. B 28 (1980) 142–163. doi: 10.1016/0095-8956(80)90061-1
[12] R. Wang A. Yang and S. Wang, Kings in locally semicomplete digraphs, J. Graph Theory 63 (2010) 279–287. doi: 10.1002/jgt.20426