The Double Roman Domatic Number of a Digraph
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 4, pp. 995-1004.

Voir la notice de l'article provenant de la source Library of Science

A double Roman dominating function on a digraph D with vertex set V(D) is defined in [G. Hao, X. Chen and L. Volkmann, Double Roman domination in digraphs, Bull. Malays. Math. Sci. Soc. (2017).] as a function f : V (D) → 0, 1, 2, 3 having the property that if f(v) = 0, then the vertex v must have at least two in-neighbors assigned 2 under f or one in-neighbor w with f(w) = 3, and if f(v) = 1, then the vertex v must have at least one in-neighbor u with f(u) ≥ 2. A set f_1, f_2, . . ., f_d of distinct double Roman dominating functions on D with the property that ∑_i=1^df_i(v)≤3 for each v ∈ V (D) is called a double Roman dominating family (of functions) on D. The maximum number of functions in a double Roman dominating family on D is the double Roman domatic number of D, denoted by d_dR(D). We initiate the study of the double Roman domatic number, and we present different sharp bounds on d_dR(D). In addition, we determine the double Roman domatic number of some classes of digraphs.
Keywords: digraph, double Roman domination, double Roman domatic number
@article{DMGT_2020_40_4_a3,
     author = {Volkmann, Lutz},
     title = {The {Double} {Roman} {Domatic} {Number} of a {Digraph}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {995--1004},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a3/}
}
TY  - JOUR
AU  - Volkmann, Lutz
TI  - The Double Roman Domatic Number of a Digraph
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2020
SP  - 995
EP  - 1004
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a3/
LA  - en
ID  - DMGT_2020_40_4_a3
ER  - 
%0 Journal Article
%A Volkmann, Lutz
%T The Double Roman Domatic Number of a Digraph
%J Discussiones Mathematicae. Graph Theory
%D 2020
%P 995-1004
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a3/
%G en
%F DMGT_2020_40_4_a3
Volkmann, Lutz. The Double Roman Domatic Number of a Digraph. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 4, pp. 995-1004. http://geodesic.mathdoc.fr/item/DMGT_2020_40_4_a3/

[1] H. Abdollahzadeh Ahangar, J. Amjadi, M. Atapour, M. Chellali and S.M. Sheik-holeslami, Double Roman trees, Ars Combin., to appear.

[2] H. Abdollahzadeh Ahangar, J. Amjadi, M. Chellali, S. Nazari-Moghaddam and S.M. Sheikholeslami, Trees with double Roman domination number twice the domination number plus two, Iran. J. Sci. Technol. Trans. A Sci. (2018), in press. doi:10.1007/s40995-018-0535-7

[3] H. Abdollahzadeh Ahangar, M. Chellali and S.M. Sheikholeslami, On the double Roman domination in graphs, Discrete Appl. Math. 232 (2017) 1–7. doi:10.1016/j.dam.2017.06.014

[4] R.A. Beeler, T.W. Haynes and S.T. Hedetniemi, Double Roman domination, Discrete Appl. Math. 211 (2016) 23–29. doi:10.1016/j.dam.2016.03.017

[5] G. Hao, X. Chen and L. Volkmann, Double Roman domination in digraphs, Bull. Malays. Math. Sci. Soc. (2017), in press. doi:10.1007/s40840-017-0582-9

[6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998).

[7] N. Jafari Rad and H. Rahbani, Some progress on double Roman domination in graphs, Discuss. Math. Graph Theory, in press. doi:10.7151/dmgt.2069

[8] E.A. Nordhaus and J.W. Gaddum, On complementary graphs, Amer. Math. Monthly 63 (1956) 175–177. doi:10.2307/2306658

[9] L. Volkmann, The double Roman domatic number of a graph, J. Combin. Math. Combin. Comput. 104 (2018) 205–215.

[10] B. Zelinka, Domatic number and degrees of vertices of a graph, Math. Slovaca 33 (1983) 145–147.

[11] X. Zhang, Z. Li, H. Jiang and Z. Shao, Double Roman domination in trees, Inform. Process. Lett. 134 (2018) 31–34. doi:10.1016/j.ipl.2018.01.004